|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from utils.metrics import bbox_iou |
|
from utils.torch_utils import de_parallel |
|
|
|
|
|
def smooth_BCE(eps=0.1): |
|
|
|
return 1.0 - 0.5 * eps, 0.5 * eps |
|
|
|
|
|
class BCEBlurWithLogitsLoss(nn.Module): |
|
|
|
def __init__(self, alpha=0.05): |
|
super().__init__() |
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') |
|
self.alpha = alpha |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
pred = torch.sigmoid(pred) |
|
dx = pred - true |
|
|
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) |
|
loss *= alpha_factor |
|
return loss.mean() |
|
|
|
|
|
class FocalLoss(nn.Module): |
|
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): |
|
super().__init__() |
|
self.loss_fcn = loss_fcn |
|
self.gamma = gamma |
|
self.alpha = alpha |
|
self.reduction = loss_fcn.reduction |
|
self.loss_fcn.reduction = 'none' |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
|
|
|
|
|
|
|
|
pred_prob = torch.sigmoid(pred) |
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob) |
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) |
|
modulating_factor = (1.0 - p_t) ** self.gamma |
|
loss *= alpha_factor * modulating_factor |
|
|
|
if self.reduction == 'mean': |
|
return loss.mean() |
|
elif self.reduction == 'sum': |
|
return loss.sum() |
|
else: |
|
return loss |
|
|
|
|
|
class QFocalLoss(nn.Module): |
|
|
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): |
|
super().__init__() |
|
self.loss_fcn = loss_fcn |
|
self.gamma = gamma |
|
self.alpha = alpha |
|
self.reduction = loss_fcn.reduction |
|
self.loss_fcn.reduction = 'none' |
|
|
|
def forward(self, pred, true): |
|
loss = self.loss_fcn(pred, true) |
|
|
|
pred_prob = torch.sigmoid(pred) |
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) |
|
modulating_factor = torch.abs(true - pred_prob) ** self.gamma |
|
loss *= alpha_factor * modulating_factor |
|
|
|
if self.reduction == 'mean': |
|
return loss.mean() |
|
elif self.reduction == 'sum': |
|
return loss.sum() |
|
else: |
|
return loss |
|
|
|
|
|
class ComputeLoss: |
|
sort_obj_iou = False |
|
|
|
|
|
def __init__(self, model, autobalance=False): |
|
device = next(model.parameters()).device |
|
h = model.hyp |
|
|
|
|
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) |
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) |
|
|
|
|
|
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) |
|
|
|
|
|
g = h['fl_gamma'] |
|
if g > 0: |
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) |
|
|
|
m = de_parallel(model).model[-1] |
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) |
|
self.ssi = list(m.stride).index(16) if autobalance else 0 |
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance |
|
self.nc = m.nc |
|
self.nl = m.nl |
|
self.anchors = m.anchors |
|
self.device = device |
|
|
|
def __call__(self, p, targets): |
|
bs = p[0].shape[0] |
|
loss = torch.zeros(3, device=self.device) |
|
tcls, tbox, indices = self.build_targets(p, targets) |
|
|
|
|
|
for i, pi in enumerate(p): |
|
b, gj, gi = indices[i] |
|
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) |
|
|
|
n_labels = b.shape[0] |
|
if n_labels: |
|
|
|
pxy, pwh, _, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pxy = pxy.sigmoid() * 1.6 - 0.3 |
|
pwh = (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i] |
|
pbox = torch.cat((pxy, pwh), 1) |
|
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() |
|
loss[0] += (1.0 - iou).mean() |
|
|
|
|
|
iou = iou.detach().clamp(0).type(tobj.dtype) |
|
if self.sort_obj_iou: |
|
j = iou.argsort() |
|
b, gj, gi, iou = b[j], gj[j], gi[j], iou[j] |
|
if self.gr < 1: |
|
iou = (1.0 - self.gr) + self.gr * iou |
|
tobj[b, gj, gi] = iou |
|
|
|
|
|
if self.nc > 1: |
|
t = torch.full_like(pcls, self.cn, device=self.device) |
|
t[range(n_labels), tcls[i]] = self.cp |
|
loss[2] += self.BCEcls(pcls, t) |
|
|
|
obji = self.BCEobj(pi[:, 4], tobj) |
|
loss[1] += obji * self.balance[i] |
|
if self.autobalance: |
|
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() |
|
|
|
if self.autobalance: |
|
self.balance = [x / self.balance[self.ssi] for x in self.balance] |
|
loss[0] *= self.hyp['box'] |
|
loss[1] *= self.hyp['obj'] |
|
loss[2] *= self.hyp['cls'] |
|
return loss.sum() * bs, loss.detach() |
|
|
|
def build_targets(self, p, targets): |
|
|
|
nt = targets.shape[0] |
|
tcls, tbox, indices = [], [], [] |
|
gain = torch.ones(6, device=self.device) |
|
|
|
g = 0.3 |
|
off = torch.tensor( |
|
[ |
|
[0, 0], |
|
[1, 0], |
|
[0, 1], |
|
[-1, 0], |
|
[0, -1], |
|
|
|
], |
|
device=self.device).float() * g |
|
|
|
for i in range(self.nl): |
|
shape = p[i].shape |
|
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] |
|
|
|
|
|
t = targets * gain |
|
if nt: |
|
|
|
r = t[..., 4:6] / self.anchors[i] |
|
j = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] |
|
|
|
t = t[j] |
|
|
|
|
|
gxy = t[:, 2:4] |
|
gxi = gain[[2, 3]] - gxy |
|
j, k = ((gxy % 1 < g) & (gxy > 1)).T |
|
l, m = ((gxi % 1 < g) & (gxi > 1)).T |
|
j = torch.stack((torch.ones_like(j), j, k, l, m)) |
|
t = t.repeat((5, 1, 1))[j] |
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] |
|
else: |
|
t = targets[0] |
|
offsets = 0 |
|
|
|
|
|
bc, gxy, gwh = t.chunk(3, 1) |
|
b, c = bc.long().T |
|
gij = (gxy - offsets).long() |
|
gi, gj = gij.T |
|
|
|
|
|
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) |
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) |
|
tcls.append(c) |
|
|
|
return tcls, tbox, indices |
|
|
|
|
|
class ComputeLoss_NEW: |
|
sort_obj_iou = False |
|
|
|
|
|
def __init__(self, model, autobalance=False): |
|
device = next(model.parameters()).device |
|
h = model.hyp |
|
|
|
|
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) |
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) |
|
|
|
|
|
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) |
|
|
|
|
|
g = h['fl_gamma'] |
|
if g > 0: |
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) |
|
|
|
m = de_parallel(model).model[-1] |
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) |
|
self.ssi = list(m.stride).index(16) if autobalance else 0 |
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance |
|
self.nc = m.nc |
|
self.nl = m.nl |
|
self.anchors = m.anchors |
|
self.device = device |
|
self.BCE_base = nn.BCEWithLogitsLoss(reduction='none') |
|
|
|
def __call__(self, p, targets): |
|
tcls, tbox, indices = self.build_targets(p, targets) |
|
bs = p[0].shape[0] |
|
n_labels = targets.shape[0] |
|
loss = torch.zeros(3, device=self.device) |
|
|
|
|
|
all_loss = [] |
|
for i, pi in enumerate(p): |
|
b, gj, gi = indices[i] |
|
if n_labels: |
|
pxy, pwh, pobj, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 2) |
|
|
|
|
|
pbox = torch.cat((pxy.sigmoid() * 1.6 - 0.3, (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]), 2) |
|
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() |
|
obj_target = iou.detach().clamp(0).type(pi.dtype) |
|
|
|
all_loss.append([(1.0 - iou) * self.hyp['box'], |
|
self.BCE_base(pobj.squeeze(), torch.ones_like(obj_target)) * self.hyp['obj'], |
|
self.BCE_base(pcls, F.one_hot(tcls[i], self.nc).float()).mean(2) * self.hyp['cls'], |
|
obj_target, |
|
tbox[i][..., 2] > 0.0]) |
|
|
|
|
|
n_assign = 4 |
|
cat_loss = [torch.cat(x, 1) for x in zip(*all_loss)] |
|
ij = torch.zeros_like(cat_loss[0]).bool() |
|
sum_loss = cat_loss[0] + cat_loss[2] |
|
for col in torch.argsort(sum_loss, dim=1).T[:n_assign]: |
|
|
|
ij[range(n_labels), col] = cat_loss[4][range(n_labels), col] |
|
loss[0] = cat_loss[0][ij].mean() * self.nl |
|
loss[2] = cat_loss[2][ij].mean() * self.nl |
|
|
|
|
|
for i, (h, pi) in enumerate(zip(ij.chunk(self.nl, 1), p)): |
|
b, gj, gi = indices[i] |
|
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) |
|
if n_labels: |
|
tobj[b[h], gj[h], gi[h]] = all_loss[i][3][h] |
|
loss[1] += self.BCEobj(pi[:, 4], tobj) * (self.balance[i] * self.hyp['obj']) |
|
|
|
return loss.sum() * bs, loss.detach() |
|
|
|
def build_targets(self, p, targets): |
|
|
|
nt = targets.shape[0] |
|
tcls, tbox, indices = [], [], [] |
|
gain = torch.ones(6, device=self.device) |
|
|
|
g = 0.3 |
|
off = torch.tensor( |
|
[ |
|
[0, 0], |
|
[1, 0], |
|
[0, 1], |
|
[-1, 0], |
|
[0, -1], |
|
|
|
], |
|
device=self.device).float() |
|
|
|
for i in range(self.nl): |
|
shape = p[i].shape |
|
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] |
|
|
|
|
|
t = targets * gain |
|
if nt: |
|
|
|
r = t[..., 4:6] / self.anchors[i] |
|
a = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] |
|
|
|
|
|
|
|
|
|
gxy = t[:, 2:4] |
|
gxi = gain[[2, 3]] - gxy |
|
j, k = ((gxy % 1 < g) & (gxy > 1)).T |
|
l, m = ((gxi % 1 < g) & (gxi > 1)).T |
|
j = torch.stack((torch.ones_like(j), j, k, l, m)) & a |
|
t = t.repeat((5, 1, 1)) |
|
offsets = torch.zeros_like(gxy)[None] + off[:, None] |
|
t[..., 4:6][~j] = 0.0 |
|
else: |
|
t = targets[0] |
|
offsets = 0 |
|
|
|
|
|
bc, gxy, gwh = t.chunk(3, 2) |
|
b, c = bc.long().transpose(0, 2).contiguous() |
|
gij = (gxy - offsets).long() |
|
gi, gj = gij.transpose(0, 2).contiguous() |
|
|
|
|
|
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) |
|
tbox.append(torch.cat((gxy - gij, gwh), 2).permute(1, 0, 2).contiguous()) |
|
tcls.append(c) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return tcls, tbox, indices |
|
|