import gradio as gr import requests from PIL import Image from pathlib import Path from io import BytesIO # Diffusers import diffusers from diffusers import ( FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline ) from diffusers.utils import load_image # Pytorch import torch # Numpy import numpy as np # Jax import jax import jax.numpy as jnp from jax import pmap # Flax import flax from flax.jax_utils import replicate from flax.training.common_utils import shard def create_key(seed=0): return jax.random.PRNGKey(seed) def image_grid(imgs, rows, cols): w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid # load control net and stable diffusion v1-5 controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "jax-diffuser-event/learner/trained_model_v0.1", from_flax=True, dtype=jnp.float32 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.float32, safety_checker=None, ) # inference function takes prompt, negative prompt and image def infer(prompts, negative_prompts, image): params["controlnet"] = controlnet_params num_samples = 1 # jax.device_count() rng = create_key(0) rng = jax.random.split(rng, jax.device_count()) battlemap_image = load_image(image) prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) processed_image = pipe.prepare_image_inputs([battlemap_image] * num_samples) p_params = replicate(params) prompt_ids = shard(prompt_ids) negative_prompt_ids = shard(negative_prompt_ids) processed_image = shard(processed_image) output = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, # params = params, prng_seed=rng, num_inference_steps=50, neg_prompt_ids=negative_prompt_ids, jit=True, ).images output_image = pipe.numpy_to_pil( np.asarray(output.reshape((num_samples,) + output.shape[-3:])) ) return output_image title = "ControlNet on Battlemaps" description = "This is a demo on ControlNet based on Bettlemaps." # you need to pass inputs and outputs according to inference function gr.Interface( fn=infer, inputs=["text", "text", "image"], outputs="gallery", title=title, description=description, ).launch()