import os import gradio as gr import numpy as np import plotly.graph_objs as go from datasets import load_dataset from pymatgen.analysis.phase_diagram import PDPlotter, PhaseDiagram from pymatgen.core import Composition, Structure from pymatgen.core.composition import Composition from pymatgen.entries.computed_entries import (ComputedStructureEntry, GibbsComputedStructureEntry) HF_TOKEN = os.environ.get("HF_TOKEN") # Load only the train split of the dataset dataset = load_dataset( "LeMaterial/leDataset", token=HF_TOKEN, split="train", columns=[ "lattice_vectors", "species_at_sites", "cartesian_site_positions", "energy", "energy_corrected", "immutable_id", "elements", "functional", ], ) # Convert the train split to a pandas DataFrame train_df = dataset.to_pandas() del dataset def create_phase_diagram( elements, max_e_above_hull, color_scheme, plot_style, functional, finite_temp ): # Split elements and remove any whitespace element_list = [el.strip() for el in elements.split("-")] # Filter entries based on functional if functional == "PBE": entries_df = entries_df[train_df["functional"] == "pbe"] elif functional == "PBESol": entries_df = entries_df[train_df["functional"] == "pbe"] elif functional == "SCAN": entries_df = entries_df[train_df["functional"] == "pbe"] isubset = lambda x: set(x).issubset(element_list) isintersection = lambda x: len(set(x).intersection(element_list)) > 0 entries_df = entries_df[ [isintersection(l) and isubset(l) for l in entries_df.elements.values.tolist()] ] # Fetch all entries from the Materials Project database entries = [ ComputedStructureEntry( Structure( [x.tolist() for x in row["lattice_vectors"].tolist()], row["species_at_sites"], row["cartesian_site_positions"], coords_are_cartesian=True, ), energy=row["energy"], correction=row["energy_corrected"] - row["energy"] if not np.isnan(row["energy_corrected"]) else 0, entry_id=row["immutable_id"], parameters={"run_type": row["functional"]}, ) for n, row in entries_df.iterrows() ] # Fetch elemental entries (they are usually GGA calculations) elemental_entries = [e for e in entries if e.composition.is_element] if finite_temp: entries = GibbsComputedStructureEntry.from_entries(entries) # Build the phase diagram try: phase_diagram = PhaseDiagram(entries) except ValueError as e: return go.Figure().add_annotation(text=str(e)) # Generate plotly figure if plot_style == "2D": plotter = PDPlotter(phase_diagram, show_unstable=True, backend="plotly") fig = plotter.get_plot() else: # For 3D plots, limit to ternary systems if len(element_list) == 3: plotter = PDPlotter( phase_diagram, show_unstable=True, backend="plotly", ternary_style="3d" ) fig = plotter.get_plot() else: return go.Figure().add_annotation( text="3D plots are only available for ternary systems." ) # Adjust the maximum energy above hull # (This is a placeholder as PDPlotter does not support direct filtering) # Return the figure return fig # Define Gradio interface components elements_input = gr.Textbox( label="Elements (e.g., 'Li-Fe-O')", placeholder="Enter elements separated by '-'", value="Li-Fe-O", ) max_e_above_hull_slider = gr.Slider( minimum=0, maximum=1, value=0.1, label="Maximum Energy Above Hull (eV)" ) color_scheme_dropdown = gr.Dropdown( choices=["Energy Above Hull", "Formation Energy"], label="Color Scheme" ) plot_style_dropdown = gr.Dropdown(choices=["2D", "3D"], label="Plot Style") functional_dropdown = gr.Dropdown(choices=["PBE", "PBESol", "SCAN"], label="Functional") finite_temp_toggle = gr.Checkbox(label="Enable Finite Temperature Estimation") # Create Gradio interface iface = gr.Interface( fn=create_phase_diagram, inputs=[ elements_input, max_e_above_hull_slider, color_scheme_dropdown, plot_style_dropdown, functional_dropdown, finite_temp_toggle, ], outputs=gr.Plot(label="Phase Diagram"), title="Materials Project Phase Diagram", description="Generate a phase diagram for a set of elements using Materials Project data.", ) # Launch the app iface.launch()