phase_diagram / app.py
msiron's picture
add finite temp
0641fac
raw
history blame
4.25 kB
import os
import gradio as gr
import plotly.graph_objs as go
from datasets import load_dataset
from pymatgen.analysis.phase_diagram import PDPlotter, PhaseDiagram
from pymatgen.core import Composition, Structure
from pymatgen.core.composition import Composition
from pymatgen.entries.computed_entries import (
ComputedStructureEntry,
GibbsComputedStructureEntry,
)
# Load only the train split of the dataset
dataset = load_dataset("LeMaterial/leDataset", split="train")
# Convert the train split to a pandas DataFrame
train_df = dataset.to_pandas()
def create_phase_diagram(
elements, max_e_above_hull, color_scheme, plot_style, functional, finite_temp
):
# Split elements and remove any whitespace
element_list = [el.strip() for el in elements.split("-")]
# Fetch all entries from the Materials Project database
entries = [
ComputedStructureEntry(
Structure(
[x.tolist() for x in df.iloc[0]["lattice_vectors"].tolist()],
row["species_at_sites"],
row["cartesian_site_positions"],
coords_are_cartesian=True,
),
energy=row["energy"],
correction=row["energy_corrected"] - row["energy"],
entry_id=row["immutable_id"],
)
for n, row in train_df.iterrows()
if len(set(row["elements"]).intersection(element_list)) > 0
and set(row["elements"]).issubset(element_list)
]
# Fetch elemental entries (they are usually GGA calculations)
elemental_entries = [e for e in entries if e.composition.is_element]
# Filter entries based on functional
if functional == "GGA":
entries = [
e
for e in entries
if not e.parameters.get("run_type", "").startswith("GGA+U")
]
elif functional == "GGA+U":
entries = [
e for e in entries if e.parameters.get("run_type", "").startswith("GGA+U")
]
# Add elemental entries to ensure they are included
entries.extend([e for e in elemental_entries if e not in entries])
if finite_temp:
entries = GibbsComputedStructureEntry.from_entries(entries)
# Build the phase diagram
try:
phase_diagram = PhaseDiagram(entries)
except ValueError as e:
return go.Figure().add_annotation(text=str(e))
# Generate plotly figure
if plot_style == "2D":
plotter = PDPlotter(phase_diagram, show_unstable=True, backend="plotly")
fig = plotter.get_plot()
else:
# For 3D plots, limit to ternary systems
if len(element_list) == 3:
plotter = PDPlotter(
phase_diagram, show_unstable=True, backend="plotly", ternary_style="3d"
)
fig = plotter.get_plot()
else:
return go.Figure().add_annotation(
text="3D plots are only available for ternary systems."
)
# Adjust the maximum energy above hull
# (This is a placeholder as PDPlotter does not support direct filtering)
# Return the figure
return fig
# Define Gradio interface components
elements_input = gr.Textbox(
label="Elements (e.g., 'Li-Fe-O')",
placeholder="Enter elements separated by '-'",
value="Li-Fe-O",
)
max_e_above_hull_slider = gr.Slider(
minimum=0, maximum=1, value=0.1, label="Maximum Energy Above Hull (eV)"
)
color_scheme_dropdown = gr.Dropdown(
choices=["Energy Above Hull", "Formation Energy"], label="Color Scheme"
)
plot_style_dropdown = gr.Dropdown(choices=["2D", "3D"], label="Plot Style")
functional_dropdown = gr.Dropdown(choices=["GGA", "GGA+U", "Both"], label="Functional")
finite_temp_toggle = gr.Checkbox(label="Enable Finite Temperature Estimation")
# Create Gradio interface
iface = gr.Interface(
fn=create_phase_diagram,
inputs=[
elements_input,
max_e_above_hull_slider,
color_scheme_dropdown,
plot_style_dropdown,
functional_dropdown,
finite_temp_toggle,
],
outputs=gr.Plot(label="Phase Diagram"),
title="Materials Project Phase Diagram",
description="Generate a phase diagram for a set of elements using Materials Project data.",
)
# Launch the app
iface.launch()