Ld75 commited on
Commit
ef3b7e0
·
1 Parent(s): eca931e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -7,24 +7,33 @@ from fastapi.responses import FileResponse
7
  #from pyannote.audio import Pipeline
8
 
9
  from transformers import pipeline # le framework de huggingface
 
 
10
 
11
  app = FastAPI()
12
 
13
  #pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
14
- classifier = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour
15
- @app.get("/")
16
- def t5():
 
 
17
 
18
  #output = pipe_flan(input)
19
  #pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
20
  #pipeline("file.wav")
21
  return {"output":"OK"}
 
 
22
 
 
 
 
23
  #app.mount("/", StaticFiles(directory="static", html=True), name="static")
24
 
25
- # @app.get("/")
26
- #def index() -> FileResponse:
27
- # return FileResponse(path="/app/static/index.html", media_type="text/html")
28
 
29
 
30
 
 
7
  #from pyannote.audio import Pipeline
8
 
9
  from transformers import pipeline # le framework de huggingface
10
+ #from datasets import load_dataset, Audio # ça c'est pour entrainer mon modele
11
+
12
 
13
  app = FastAPI()
14
 
15
  #pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
16
+ #deepneurones = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour. pipeline() telecharge dans un cache local le modele deeplearning
17
+ deepneurones= pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
18
+
19
+ @app.get("/healthcheck")
20
+ def healthcheck():
21
 
22
  #output = pipe_flan(input)
23
  #pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
24
  #pipeline("file.wav")
25
  return {"output":"OK"}
26
+ @app.get("/en")
27
+ def stt(input):
28
 
29
+ dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
30
+ results = deepneurones(input)
31
+ return {"output":results}
32
  #app.mount("/", StaticFiles(directory="static", html=True), name="static")
33
 
34
+ @app.get("/")
35
+ def index() -> FileResponse:
36
+ return FileResponse(path="/index.html", media_type="text/html")
37
 
38
 
39