Ld75's picture
Update app.py
042f554
raw
history blame
962 Bytes
#import gradio as gr
#gr.Interface.load("models/pyannote/speaker-diarization").launch()
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
#from pyannote.audio import Pipeline
from transformers import pipeline # le framework de huggingface
app = FastAPI()
#pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
classifier = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour
@app.get("/")
def t5():
#output = pipe_flan(input)
#pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization")
#pipeline("file.wav")
return {"output":"OK"}
#app.mount("/", StaticFiles(directory="static", html=True), name="static")
# @app.get("/")
#def index() -> FileResponse:
# return FileResponse(path="/app/static/index.html", media_type="text/html")