from fastai.vision.all import * import gradio as gr learn = load_learner('model.pth') def classify_image(img): celebrity_name,_,probs = learn.predict(img) results = dict(zip(list(learn.dls.vocab),probs)) best_results = sorted(results, key=results.get, reverse=True)[:5] probabilities = {key: float(results[key]) for key in best_results} return probabilities image = gr.inputs.Image(shape=(224,224)) label = gr.outputs.Label() examples = ['emma_watson.jpg', "tom_hanks.jpeg"] iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) iface.launch(inline=False)