import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification import torch # Define the summarization pipeline try: summarizer_ntg = pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-summarize-news") except Exception as e: st.error(f"Error loading summarization model: {e}") # Load the tokenizer and model for classification try: tokenizer_bb = AutoTokenizer.from_pretrained("Lauraayu/News_Classi_Model") model_bb = AutoModelForSequenceClassification.from_pretrained("Lauraayu/News_Classi_Model") except Exception as e: st.error(f"Error loading classification model or tokenizer: {e}") # Streamlit application title st.title("News Article Summarizer and Classifier") st.write("Enter a news article text to get its summary and category.") # Text input for user to enter the news article text text = st.text_area("Enter the news article text here:") # Perform summarization and classification when the user clicks the "Classify" button if st.button("Classify"): if not text: st.error("Please enter some text to classify.") else: try: # Perform text summarization summary = summarizer_ntg(text)[0]['summary_text'] # Tokenize the summarized text inputs = tokenizer_bb(summary, return_tensors="pt", truncation=True, padding=True, max_length=512) # Move inputs and model to the same device (GPU or CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") inputs = {k: v.to(device) for k, v in inputs.items()} model_bb.to(device) # Perform text classification with torch.no_grad(): outputs = model_bb(**inputs) # Get the predicted label predicted_label_id = torch.argmax(outputs.logits, dim=-1).item() label_mapping = model_bb.config.id2label predicted_label = label_mapping[predicted_label_id] # Display the summary and classification result st.write("Summary:", summary) st.write("Category:", predicted_label) except Exception as e: st.error(f"Error during summarization or classification: {e}")