Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the summariztion model pipeline
|
5 |
+
summarizer_ntg = pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-summarize-news")
|
6 |
+
classifier = pipeline("text-classification", model='Lauraayu/News_Classi_Model', return_all_scores=True)
|
7 |
+
|
8 |
+
# Streamlit application title
|
9 |
+
st.title("News Classification")
|
10 |
+
st.write("Classification for different News types")
|
11 |
+
|
12 |
+
# Text input for user to enter the text to classify
|
13 |
+
text = st.text_area("Enter the News to classify","")
|
14 |
+
|
15 |
+
# Perform text classification when the user clicks the "Classify" button
|
16 |
+
if st.button("Classify"):
|
17 |
+
|
18 |
+
# Perform text classification on the input text
|
19 |
+
result0 = summarizer_ntg(text)
|
20 |
+
result = classifier(result0)
|
21 |
+
# Display the classification result
|
22 |
+
max_score = float('-inf')
|
23 |
+
max_label = ''
|
24 |
+
for result in results:
|
25 |
+
if result['score'] > max_score:
|
26 |
+
max_score = result['score']
|
27 |
+
max_label = result['label']
|
28 |
+
st.write("Text:", text)
|
29 |
+
st.write("Label:", max_label)
|
30 |
+
st.write("Score:", max_score)
|