Lauraayu commited on
Commit
2f910ac
·
verified ·
1 Parent(s): 6dee087

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -11
app.py CHANGED
@@ -1,12 +1,9 @@
1
  import streamlit as st
2
- from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
3
  import torch
4
 
5
- # Define the summarization pipeline
6
  summarizer_ntg = pipeline("summarization", model="mrm8488/t5-base-finetuned-summarize-news")
7
-
8
- # Load the tokenizer and model for classification
9
- tokenizer_bb = AutoTokenizer.from_pretrained("Lauraayu/News_Classi_Model")
10
  model_bb = AutoModelForSequenceClassification.from_pretrained("Lauraayu/News_Classi_Model")
11
 
12
  # Streamlit application title
@@ -20,18 +17,15 @@ text = st.text_area("Enter the news article text here:")
20
  if st.button("Classify"):
21
  # Perform text summarization
22
  summary = summarizer_ntg(text)[0]['summary_text']
23
-
24
- # Tokenize the summarized text
25
- inputs = tokenizer_bb(summary, return_tensors="pt", truncation=True, padding=True, max_length=512)
26
-
27
  # Move inputs and model to the same device (GPU or CPU)
28
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
29
- inputs = {k: v.to(device) for k, v in inputs.items()}
30
  model_bb.to(device)
31
 
32
  # Perform text classification
33
  with torch.no_grad():
34
- outputs = model_bb(**inputs)
35
 
36
  # Get the predicted label
37
  predicted_label_id = torch.argmax(outputs.logits, dim=-1).item()
 
1
  import streamlit as st
2
+ from transformers import pipeline
3
  import torch
4
 
5
+ # Define pipelines
6
  summarizer_ntg = pipeline("summarization", model="mrm8488/t5-base-finetuned-summarize-news")
 
 
 
7
  model_bb = AutoModelForSequenceClassification.from_pretrained("Lauraayu/News_Classi_Model")
8
 
9
  # Streamlit application title
 
17
  if st.button("Classify"):
18
  # Perform text summarization
19
  summary = summarizer_ntg(text)[0]['summary_text']
20
+
 
 
 
21
  # Move inputs and model to the same device (GPU or CPU)
22
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
+ summary = {k: v.to(device) for k, v in inputs.items()}
24
  model_bb.to(device)
25
 
26
  # Perform text classification
27
  with torch.no_grad():
28
+ outputs = model_bb(**summary)
29
 
30
  # Get the predicted label
31
  predicted_label_id = torch.argmax(outputs.logits, dim=-1).item()