Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load the summariztion model pipeline | |
summarizer_ntg = pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-summarize-news") | |
classifier = pipeline("text-classification", model='Lauraayu/News_Classi_Model', return_all_scores=True) | |
# Streamlit application title | |
st.title("News Classification") | |
st.write("Classification for different News types") | |
# Text input for user to enter the text to classify | |
text = st.text_area("Enter the News to classify","") | |
# Perform text classification when the user clicks the "Classify" button | |
if st.button("Classify"): | |
# Perform text classification on the input text | |
result0 = summarizer_ntg(text) | |
result = classifier(result0) | |
st.write(result) | |