Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
def main(): | |
# Define pipelines | |
summarizer_ntg = pipeline(model="mrm8488/t5-base-finetuned-summarize-news") | |
model = pipeline(model="Lauraayu/News_Classi_Model") | |
# Streamlit application title | |
st.title("News Article Classifier") | |
st.write("Enter a news article text to get its category:") | |
# Text input for user to enter the news article text | |
text = st.text_area("Enter the news article text here:") | |
# Perform summarization and classification when the user clicks the "Classify" button | |
if st.button("Classify"): | |
# Perform text summarization | |
summary = summarizer_ntg(text)[0] | |
# Perform classification | |
output = model(summary) | |
category = output[0]["label"] | |
# Display the summary and classification result | |
st.write("Category:", category) |