Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Define the summarization pipeline | |
summarizer_ntg = pipeline("text2text-generation", model="mrm8488/t5-base-finetuned-summarize-news") | |
# Streamlit application title | |
st.title("News Article Summarizer and Classifier") | |
st.write("Enter a news article text to get its summary and category.") | |
# Text input for user to enter the news article text | |
text = st.text_area("Enter the news article text here:") | |
# Perform summarization and classification when the user clicks the "Classify" button | |
if st.button("Classify"): | |
# Perform text summarization | |
summary = summarizer_ntg(text)[0]['summary_text'] | |
# Display the summary and classification result | |
st.write("Summary:", summary) | |