diff --git "a/app.py" "b/app.py"
--- "a/app.py"
+++ "b/app.py"
@@ -1,105 +1,2083 @@
-# from fastapi import FastAPI, HTTPException
-# from pydantic import BaseModel
-# from transformers import AutoModelForCausalLM, AutoTokenizer
-# import torch
-# from huggingface_hub import snapshot_download
-# from safetensors.torch import load_file
-
-# class ModelInput(BaseModel):
-#     prompt: str
-#     max_new_tokens: int = 50
-
-# app = FastAPI()
-
-# # Define model paths
-# base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
-# adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
-
-# try:
-#     # First load the base model
-#     print("Loading base model...")
-#     model = AutoModelForCausalLM.from_pretrained(
-#         base_model_path,
-#         torch_dtype=torch.float16,
-#         trust_remote_code=True,
-#         device_map="auto"
-#     )
-    
-#     # Load tokenizer from base model
-#     print("Loading tokenizer...")
-#     tokenizer = AutoTokenizer.from_pretrained(base_model_path)
+from fastapi import FastAPI, HTTPException
+from pydantic import BaseModel
+from transformers import AutoModelForCausalLM, AutoTokenizer
+import torch
+from huggingface_hub import snapshot_download
+from safetensors.torch import load_file
+import numpy as np
+import torch.nn as nn
+import networkx as nx
+from dataclasses import dataclass
+from typing import List, Dict, Any, Tuple, Optional, Set, Protocol, Union
+from collections import defaultdict
+import heapq
+from abc import ABC, abstractmethod
+from enum import Enum
+import concurrent.futures
+from concurrent.futures import ThreadPoolExecutor
+import time
+from datetime import datetime
+import random
+import pandas as pd
+from torch.utils.data import Dataset, DataLoader, TensorDataset
+from sklearn.model_selection import train_test_split
+from tqdm import tqdm
+import os
+from sklearn.preprocessing import MinMaxScaler
+
+# --- Enhanced Constants ---
+MAX_SHORT_TERM_MEMORY = 10000  # Increased capacity
+MAX_LONG_TERM_MEMORY = 100000  # Increased capacity
+UNCERTAINTY_QUANTIFICATION_METHODS = ['bayesian', 'ensemble', 'confidence_scores', 'gaussian_processes']
+QUANTUM_ALGORITHMS = ["Shor's", "Grover's", "QAOA", "VQE", "HHL"]
+NETWORK_ADAPTATION_THRESHOLD = 0.5  # Adjusted threshold
+REAL_WORLD_INTERACTION_TYPES = ['sensor_read', 'actuator_execute', 'data_stream', 'feedback_loop']
+CONTEXT_SIMILARITY_THRESHOLD = 0.4  # Lower threshold for broader context
+CONTEXT_DECAY_RATE = 0.0005  # Slower decay
+MAX_CONTEXT_SIZE = 10000  # Increased context size
+KNOWLEDGE_RELATIONSHIP_DECAY_RATE = 0.0005  # Slower decay
+MAX_KNOWLEDGE_NODES = 50000  # Increased node capacity
+CAUSAL_INFERENCE_THRESHOLD = 0.5  # Adjusted threshold
+CAUSAL_DECAY_RATE = 0.0005  # Slower decay
+MAX_CAUSAL_ENTRIES = 10000  # Increased entry capacity
+MAX_DOMAIN_MODELS = 200  # Increased model capacity
+MAX_TRANSFER_MAPPINGS = 500  # Increased mapping capacity
+ADAPTIVE_LEARNING_INITIAL_LR = 0.2  # Higher initial learning rate
+ADAPTIVE_LEARNING_MIN_LR = 0.0000001  # Lower minimum learning rate
+ADAPTIVE_LEARNING_MAX_LR = 1.0  # Increased max learning rate
+EMOTION_CATEGORIES = ['anger', 'fear', 'joy', 'love', 'sadness', 'surprise', 'neutral', 'anticipation', 'trust', 'disgust', 'contentment', 'boredom', 'curiosity', 'awe']  # Expanded emotion categories
+COLLABORATIVE_CONSENSUS_THRESHOLD = 0.7  # Adjusted threshold
+MAX_COLLABORATIVE_AGENTS = 100  # Increased agent capacity
+SOLUTION_HISTORY_SIZE = 1000  # Increased history size
+MAX_ETHICAL_VIOLATIONS_HISTORY = 2000  # Increased history capacity
+MAX_RESOURCE_HISTORY = 5000  # Increased history size
+MAX_PREDICTIVE_MODELS = 100  # Increased model capacity
+MAX_PREDICTION_HISTORY = 10000  # Increased history capacity
+SHORT_TERM_MEMORY_CAPACITY = 1000  # Increased capacity
+MEMORY_CONSOLIDATION_THRESHOLD = 1.5  # Lower threshold for faster consolidation
+LONG_TERM_MEMORY_CAPACITY = 10000  # Increased capacity
+MAX_COGNITIVE_STYLE_HISTORY = 500  # Increased history size
+GOAL_ALIGNMENT_THRESHOLD = 0.5  # Adjusted threshold
+MAX_GOALS = 500  # Increased goal capacity
+MAX_SAFETY_CONSTRAINTS = 500  # Increased constraint capacity
+MAX_LANGUAGES = 100  # Increased language capacity
+QUANTUM_MAX_RESULTS_HISTORY = 1000  # Increased history size
+ADAPTIVE_NEURAL_NETWORK_MAX_LAYERS = 30  # Increased layer capacity
+ADAPTIVE_NEURAL_NETWORK_MAX_LAYER_SIZE = 32768  # Increased layer size
+MAX_INTERACTION_HISTORY = 5000  # Increased history capacity
+RESPONSE_MODEL_HIDDEN_DIM = 8192 # Increased response model hidden dimensions
+RESPONSE_MODEL_OUTPUT_DIM = 4096 # Increased response model output dimensions
+TRAINING_BATCH_SIZE = 128 # Increased training batch size
+TRAINING_EPOCHS = 20 # Increased training epochs
+TRAINING_LEARNING_RATE = 0.0001 # Changed learning rate for better convergence
+TEXT_EMBEDDING_DIM = 768  # Standard dimension for text embeddings
+VISUAL_EMBEDDING_DIM = 2048  # Dimension for visual embeddings
+AUDIO_EMBEDDING_DIM = 512 # Dimension for audio embeddings
+
+# --- Enhanced Thinking Styles ---
+class ThinkingStyle(Enum):
+    ANALYTICAL = "analytical"
+    CREATIVE = "creative"
+    CRITICAL = "critical"
+    SYSTEMATIC = "systematic"
+    LATERAL = "lateral"
+    INTUITIVE = "intuitive"
+    COLLABORATIVE = "collaborative"
+    ETHICAL = "ethical"
+    PRAGMATIC = "pragmatic"
+    INNOVATIVE = "innovative"
+    REFLECTIVE = "reflective"
+    EXPLORATORY = "exploratory"
+    STRATEGIC = "strategic"
+    ABSTRACT = "abstract"
+    CONCRETE = "concrete"
+    EMPATHETIC = "empathetic"
+    HOLISTIC = "holistic"
+    DIVERGENT = "divergent"
+    CONVERGENT = "convergent"
+    ADAPTIVE = "adaptive"
+
+# --- Enhanced Generalized Context Manager ---
+class GeneralizedContextManager:
+    def __init__(self, similarity_threshold=CONTEXT_SIMILARITY_THRESHOLD, context_decay_rate=CONTEXT_DECAY_RATE, max_context_size=MAX_CONTEXT_SIZE):
+        self.context_graph = nx.DiGraph()
+        self.temporal_window = []
+        self.context_cache = {}
+        self.similarity_threshold = similarity_threshold
+        self.context_decay_rate = context_decay_rate
+        self.max_context_size = max_context_size
+        self.event_listeners = defaultdict(list)
+
+    def add_context(self, context_id: str, context_data: Dict[str, Any],
+                    timestamp: Optional[datetime] = None, metadata: Optional[Dict[str, Any]] = None):
+        if timestamp is None:
+            timestamp = datetime.now()
+
+        if context_id not in self.context_graph:
+            self.context_graph.add_node(context_id,
+                                      data=context_data,
+                                      timestamp=timestamp,
+                                      metadata=metadata or {})
+        else:
+            self.context_graph.nodes[context_id]['data'].update(context_data)
+            self.context_graph.nodes[context_id]['timestamp'] = timestamp
+            if metadata:
+                self.context_graph.nodes[context_id]['metadata'].update(metadata)
+
+        self.temporal_window.append((timestamp, context_id))
+        self.temporal_window.sort()
+
+        self._update_relationships(context_id)
+        self._manage_context_size()
+        self._decay_context()
+        self._trigger_event(context_id, 'context_added')
+
+    def _calculate_similarity(self, data1: Dict[str, Any], data2: Dict[str, Any]) -> float:
+        keys1 = set(data1.keys())
+        keys2 = set(data2.keys())
+        common_keys = keys1.intersection(keys2)
+
+        if not common_keys:
+            return 0.0
+
+        similarity_sum = 0.0
+        for key in common_keys:
+            value1 = data1[key]
+            value2 = data2[key]
+
+            if isinstance(value1, (int, float)) and isinstance(value2, (int, float)):
+                similarity_sum += 1.0 / (1.0 + abs(value1 - value2))
+            elif isinstance(value1, str) and isinstance(value2, str):
+                similarity_sum += float(value1 == value2)
+            elif isinstance(value1, (list, tuple, np.ndarray)) and isinstance(value2, (list, tuple, np.ndarray)):
+                if isinstance(value1, np.ndarray):
+                    value1 = value1.flatten()
+                if isinstance(value2, np.ndarray):
+                    value2 = value2.flatten()
+                if value1.size > 0 and value2.size > 0:
+                    dot_product = np.dot(value1, value2)
+                    magnitude1 = np.linalg.norm(value1)
+                    magnitude2 = np.linalg.norm(value2)
+                    if magnitude1 != 0 and magnitude2 != 0:
+                        similarity_sum += dot_product / (magnitude1 * magnitude2)
+            elif type(value1) == type(value2):
+                similarity_sum += float(value1 == value2)
+        return similarity_sum / len(common_keys) if len(common_keys) > 0 else 0.0
+
+    def _update_relationships(self, context_id: str):
+        context_data = self.context_graph.nodes[context_id]['data']
+        for existing_id in self.context_graph.nodes():
+            if existing_id != context_id:
+                similarity = self._calculate_similarity(
+                    context_data,
+                    self.context_graph.nodes[existing_id]['data']
+                )
+                if similarity > self.similarity_threshold:
+                    if not self.context_graph.has_edge(context_id, existing_id):
+                        self.context_graph.add_edge(context_id, existing_id, weight=similarity)
+                    else:
+                        self.context_graph[context_id][existing_id]['weight'] = similarity
+                elif self.context_graph.has_edge(context_id, existing_id):
+                    self.context_graph.remove_edge(context_id, existing_id)
+
+    def _decay_context(self):
+        now = datetime.now()
+        self.temporal_window = [(t, c_id) for t, c_id in self.temporal_window if (now - t).total_seconds() < 86400 * 30]  # Increased window to 30 days
+
+        nodes_to_remove = []
+        for node, data in self.context_graph.nodes(data=True):
+            time_diff = (now - data['timestamp']).total_seconds()
+            data['weight'] = data.get('weight', 1.0) * (1 - self.context_decay_rate * time_diff)
+            if data['weight'] < 0.00001:  # More aggressive decay
+                nodes_to_remove.append(node)
+
+        for node in nodes_to_remove:
+            self.context_graph.remove_node(node)
+            self._trigger_event(node, 'context_removed')
+
+    def _manage_context_size(self):
+        if len(self.context_graph) > self.max_context_size:
+            # Remove least recently used or lowest weighted nodes
+            sorted_nodes = sorted(self.context_graph.nodes(data=True),
+                                  key=lambda x: (x[1]['timestamp'], x[1].get('weight', 1.0)))
+            nodes_to_remove = sorted_nodes[:len(self.context_graph) - self.max_context_size]
+            for node, _ in nodes_to_remove:
+                self.context_graph.remove_node(node)
+                self._trigger_event(node, 'context_removed')
+
+    def retrieve_related_context(self, context_id: str, depth: int = 4, min_similarity: float = 0.1) -> Dict[str, Any]:
+        related_context = {}
+        try:
+            neighbors = nx.ego_graph(self.context_graph, context_id, radius=depth)
+            for neighbor in neighbors:
+                edge_data = self.context_graph.get_edge_data(context_id, neighbor)
+                if edge_data is None or edge_data['weight'] >= min_similarity:
+                    related_context[neighbor] = self.context_graph.nodes[neighbor]['data']
+        except nx.NodeNotFound:
+            pass
+        return related_context
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, context_id: str, event_type: str):
+        if event_type in self.event_listeners:
+            for listener in self.event_listeners[event_type]:
+                listener(context_id, event_type, self.context_graph.nodes[context_id])
+
+# --- Enhanced Dynamic Knowledge Graph ---
+class DynamicKnowledgeGraph:
+    def __init__(self, relationship_decay_rate=KNOWLEDGE_RELATIONSHIP_DECAY_RATE, max_nodes=MAX_KNOWLEDGE_NODES):
+        self.knowledge_graph = nx.DiGraph()
+        self.temporal_index = defaultdict(list)
+        self.relationship_decay_rate = relationship_decay_rate
+        self.max_nodes = max_nodes
+        self.event_listeners = defaultdict(list)
+
+    def add_knowledge(self, concept: str, properties: Dict[str, Any],
+                     timestamp: Optional[datetime]=None, relationships: Optional[Dict[str, float]] = None):
+        if timestamp is None:
+            timestamp = datetime.now()
+
+        if concept not in self.knowledge_graph:
+            self.knowledge_graph.add_node(concept, **properties, timestamp=timestamp)
+            self._trigger_event(concept, 'knowledge_added')
+        else:
+            for key, value in properties.items():
+                self.knowledge_graph.nodes[concept][key] = value
+            self.knowledge_graph.nodes[concept]['timestamp'] = timestamp
+            self._trigger_event(concept, 'knowledge_updated')
+
+        self.temporal_index[timestamp].append(concept)
+
+        if relationships:
+            for related_concept, strength in relationships.items():
+                self.add_relationship(concept, related_concept, strength)
+
+        self._manage_graph_size()
+
+    def add_relationship(self, concept1: str, concept2: str, strength: float):
+        if self.knowledge_graph.has_edge(concept1, concept2):
+            self.knowledge_graph[concept1][concept2]['strength'] = strength
+        else:
+            self.knowledge_graph.add_edge(concept1, concept2, strength=strength)
+        self._trigger_event(concept1, 'relationship_added', {'to': concept2, 'strength': strength})
+
+    def query_temporal_slice(self, start_time: datetime,
+                           end_time: datetime) -> Set[str]:
+        relevant_concepts = set()
+        for time, concepts in self.temporal_index.items():
+            if start_time <= time <= end_time:
+                relevant_concepts.update(concepts)
+        return relevant_concepts
+
+    def get_related_concepts(self, concept: str, threshold: float = 0.2, depth: int = 4) -> Dict[str, Dict[str, Any]]:
+        related_concepts = {}
+        try:
+            # Use ego_graph to explore relationships up to the specified depth
+            subgraph = nx.ego_graph(self.knowledge_graph, concept, radius=depth)
+            for neighbor in subgraph.nodes:
+                if neighbor != concept:
+                    edge_data = subgraph.get_edge_data(concept, neighbor)
+                    # Consider adding a concept if it's directly connected or if it's reachable within the depth
+                    if (edge_data and edge_data['strength'] >= threshold) or neighbor in subgraph:
+                        related_concepts[neighbor] = self.knowledge_graph.nodes[neighbor]
+        except nx.NodeNotFound:
+            pass
+        return related_concepts
+
+    def decay_relationships(self):
+        now = datetime.now()
+        for u, v, data in self.knowledge_graph.edges(data=True):
+            time_diff = (now - self.knowledge_graph.nodes[u]['timestamp']).total_seconds()
+            data['strength'] *= (1 - self.relationship_decay_rate * time_diff)
+            if data['strength'] < 0.0001:
+              self.knowledge_graph.remove_edge(u,v)
+              self._trigger_event(u, 'relationship_removed', {'to': v})
+
+    def _manage_graph_size(self):
+        if len(self.knowledge_graph) > self.max_nodes:
+            # Remove nodes with the lowest degree (least connected)
+            degrees = dict(self.knowledge_graph.degree())
+            sorted_nodes = sorted(degrees.items(), key=lambda item: item[1])
+            nodes_to_remove = [node for node, degree in sorted_nodes[:len(self.knowledge_graph) - self.max_nodes]]
+            for node in nodes_to_remove:
+                self.knowledge_graph.remove_node(node)
+                self._trigger_event(node, 'knowledge_removed')
+                # Remove the node from temporal index as well
+                for time, concepts in self.temporal_index.items():
+                    if node in concepts:
+                        concepts.remove(node)
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, concept: str, event_type: str, additional_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            for listener in self.event_listeners[event_type]:
+                event_data = {
+                    'concept': concept,
+                    'event_type': event_type,
+                    'timestamp': datetime.now(),
+                    'additional_data': additional_data or {}
+                }
+                listener(event_data)
+
+# --- Enhanced Causal Engine ---
+class CausalEngine:
+    def __init__(self, inference_threshold=CAUSAL_INFERENCE_THRESHOLD, decay_rate=CAUSAL_DECAY_RATE, max_entries=MAX_CAUSAL_ENTRIES):
+        self.causal_graph = nx.DiGraph()
+        self.inference_cache = {}
+        self.inference_threshold = inference_threshold
+        self.decay_rate = decay_rate
+        self.max_entries = max_entries
+        self.evidence_history = []
+        self.event_listeners = defaultdict(list)
+
+    def add_causal_relationship(self, cause: str, effect: str,
+                              strength: float, evidence: List[Dict], timestamp: Optional[datetime] = None):
+        if timestamp is None:
+            timestamp = datetime.now()
+        if self.causal_graph.has_edge(cause, effect):
+            self.causal_graph[cause][effect]['strength'] = strength
+            self.causal_graph[cause][effect]['evidence'].extend(evidence)
+            self.causal_graph[cause][effect]['timestamp'] = timestamp
+        else:
+            self.causal_graph.add_edge(cause, effect,
+                                     strength=strength,
+                                     evidence=evidence,
+                                     timestamp=timestamp)
+        self.inference_cache.clear()
+        self._trigger_event('relationship_added', {'cause': cause, 'effect': effect, 'strength': strength})
+
+        # Store evidence in history for later analysis or auditing
+        self.evidence_history.append({
+            'cause': cause,
+            'effect': effect,
+            'strength': strength,
+            'evidence': evidence,
+            'timestamp': timestamp
+        })
+        self._manage_evidence_history()
+
+    def infer_causes(self, effect: str, min_strength: Optional[float] = None, depth: int = 4) -> List[Tuple[str, float]]:
+        min_strength = min_strength if min_strength is not None else self.inference_threshold
+
+        # Check if the result is already in the cache
+        if effect in self.inference_cache:
+            return self.inference_cache[effect]
+
+        causes = []
+        # Use breadth-first search to explore causes up to the specified depth
+        queue = [(effect, 1.0, 0)]  # (node, cumulative_strength, current_depth)
+        visited = {effect}
+
+        while queue:
+            current_node, cumulative_strength, current_depth = queue.pop(0)
+            if current_depth < depth:
+                for predecessor in self.causal_graph.predecessors(current_node):
+                    edge_data = self.causal_graph.get_edge_data(predecessor, current_node)
+                    new_strength = cumulative_strength * edge_data['strength']
+                    if new_strength >= min_strength:
+                        causes.append((predecessor, new_strength))
+                        if predecessor not in visited:
+                            visited.add(predecessor)
+                            queue.append((predecessor, new_strength, current_depth + 1))
+
+        causes.sort(key=lambda x: x[1], reverse=True)
+
+        # Cache the result for future use
+        self.inference_cache[effect] = causes
+        return causes
+
+    def decay_causal_strengths(self):
+        now = datetime.now()
+        edges_to_remove = []
+        for u, v, data in self.causal_graph.edges(data=True):
+            time_diff = (now - data['timestamp']).total_seconds() if 'timestamp' in data else 0
+            data['strength'] = max(0, data['strength'] - self.decay_rate * time_diff)
+            if data['strength'] == 0:
+              edges_to_remove.append((u,v))
+
+        for u, v in edges_to_remove:
+          self.causal_graph.remove_edge(u,v)
+          self._trigger_event('relationship_removed', {'cause': u, 'effect': v})
+
+    def get_top_causes(self, effect: str, top_n: int = 10) -> List[Tuple[str, float]]:
+        causes = self.infer_causes(effect)
+        return causes[:top_n]
+
+    def update_causal_strength(self, cause: str, effect: str, new_strength: float, new_evidence: Optional[List[Dict]] = None):
+        if self.causal_graph.has_edge(cause, effect):
+            self.causal_graph[cause][effect]['strength'] = new_strength
+            if new_evidence:
+                self.causal_graph[cause][effect]['evidence'].extend(new_evidence)
+                self.evidence_history.append({
+                    'cause': cause,
+                    'effect': effect,
+                    'strength': new_strength,
+                    'evidence': new_evidence,
+                    'timestamp': datetime.now()
+                })
+            self.inference_cache.clear()  # Invalidate cache
+            self._trigger_event('relationship_updated', {'cause': cause, 'effect': effect, 'strength': new_strength})
+        else:
+            raise ValueError(f"No causal link between {cause} and {effect}")
+
+    def _manage_evidence_history(self):
+        # Keep the evidence history within the specified size limit
+        if len(self.evidence_history) > self.max_entries:
+            self.evidence_history = self.evidence_history[-self.max_entries:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Dict[str, Any]):
+        if event_type in self.event_listeners:
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Cross Domain Mastery ---
+class CrossDomainMastery:
+    def __init__(self, max_models=MAX_DOMAIN_MODELS, max_mappings=MAX_TRANSFER_MAPPINGS):
+        self.domain_models = {}
+        self.transfer_mappings = {}
+        self.domain_experts = {}
+        self.max_models = max_models
+        self.max_mappings = max_mappings
+        self.usage_timestamps = {}
+        self.event_listeners = defaultdict(list)
+
+    def add_domain_model(self, domain: str, model: Any):
+        if len(self.domain_models) >= self.max_models:
+            self._remove_least_used_model()
+        self.domain_models[domain] = model
+        self.usage_timestamps[domain] = datetime.now()
+        self._trigger_event('model_added', {'domain': domain})
+
+    def create_transfer_mapping(self, source_domain: str,
+                              target_domain: str,
+                              mapping_function: callable):
+        if len(self.transfer_mappings) >= self.max_mappings:
+            self._remove_least_used_mapping()
+        self.transfer_mappings[(source_domain, target_domain)] = mapping_function
+        self.usage_timestamps[(source_domain, target_domain)] = datetime.now()
+        self._trigger_event('mapping_created', {'source': source_domain, 'target': target_domain})
+
+    def transfer_knowledge(self, source_domain: str,
+                          target_domain: str,
+                          knowledge: Any) -> Any:
+        if (source_domain, target_domain) in self.transfer_mappings:
+            mapping = self.transfer_mappings[(source_domain, target_domain)]
+            self.usage_timestamps[(source_domain, target_domain)] = datetime.now()
+            try:
+                transferred_knowledge = mapping(knowledge)
+                self._trigger_event('knowledge_transferred', {'source': source_domain, 'target': target_domain})
+                return transferred_knowledge
+            except Exception as e:
+                print(f"Error during knowledge transfer: {e}")
+                self._trigger_event('transfer_error', {'source': source_domain, 'target': target_domain, 'error': str(e)})
+                return None
+        return None
+
+    def register_domain_expert(self, domain: str, expert_function: callable):
+        self.domain_experts[domain] = expert_function
+        self._trigger_event('expert_registered', {'domain': domain})
+
+    def consult_domain_expert(self, domain: str, query: Any) -> Any:
+        if domain in self.domain_experts:
+            expert = self.domain_experts[domain]
+            self.usage_timestamps[domain] = datetime.now()
+            try:
+                response = expert(query)
+                self._trigger_event('expert_consulted', {'domain': domain})
+                return response
+            except Exception as e:
+                print(f"Error consulting domain expert: {e}")
+                self._trigger_event('expert_error', {'domain': domain, 'error': str(e)})
+                return None
+        return None
+
+    def _remove_least_used_model(self):
+        lru_model = min(self.usage_timestamps, key=self.usage_timestamps.get)
+        if lru_model in self.domain_models:
+          del self.domain_models[lru_model]
+          del self.usage_timestamps[lru_model]
+          self._trigger_event('model_removed', {'domain': lru_model})
+
+    def _remove_least_used_mapping(self):
+        lru_mapping = min(self.usage_timestamps, key=lambda k: self.usage_timestamps[k] if isinstance(k, tuple) else float('inf'))
+        if isinstance(lru_mapping, tuple) and lru_mapping in self.transfer_mappings:
+          del self.transfer_mappings[lru_mapping]
+          del self.usage_timestamps[lru_mapping]
+          self._trigger_event('mapping_removed', {'source': lru_mapping[0], 'target': lru_mapping[1]})
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Dict[str, Any]):
+        if event_type in self.event_listeners:
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Intuitive Multimodal Understanding ---
+class IntuitiveMultimodalUnderstanding:
+    def __init__(self, visual_dim: int = VISUAL_EMBEDDING_DIM, text_dim: int = TEXT_EMBEDDING_DIM, audio_dim: int = AUDIO_EMBEDDING_DIM, fusion_dim: int = 2048, num_heads: int = 32):
+        self.visual_encoder = nn.Sequential(
+            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
+            nn.ReLU(),
+            nn.MaxPool2d(kernel_size=2, stride=2),
+            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
+            nn.ReLU(),
+            nn.MaxPool2d(kernel_size=2, stride=2),
+            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
+            nn.ReLU(),
+            nn.MaxPool2d(kernel_size=2, stride=2),
+            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
+            nn.ReLU(),
+            nn.MaxPool2d(kernel_size=2, stride=2),
+            nn.Flatten(),
+            nn.Linear(visual_dim * visual_dim // 1024 * 512, fusion_dim),
+            nn.LayerNorm(fusion_dim)
+        )
+
+        self.text_encoder = nn.Sequential(
+            nn.Linear(text_dim, 2048),
+            nn.ReLU(),
+            nn.Linear(2048, fusion_dim),
+            nn.LayerNorm(fusion_dim)
+        )
+
+        self.audio_encoder = nn.Sequential(
+            nn.Linear(audio_dim, 1024),
+            nn.ReLU(),
+            nn.Linear(1024, fusion_dim),
+            nn.LayerNorm(fusion_dim)
+        )
+
+        self.multimodal_fusion = nn.Sequential(
+            nn.Linear(fusion_dim * 3, fusion_dim * 2),
+            nn.ReLU(),
+            nn.Linear(fusion_dim * 2, fusion_dim),
+            nn.LayerNorm(fusion_dim)
+        )
+        self.fusion_dim = fusion_dim
+        self.attention = nn.MultiheadAttention(fusion_dim, num_heads)
+        self.event_listeners = defaultdict(list)
+
+    def process_multimodal_input(self,
+                               visual_input: Optional[torch.Tensor] = None,
+                               text_input: Optional[torch.Tensor] = None,
+                               audio_input: Optional[torch.Tensor] = None) -> torch.Tensor:
+        encoded_inputs = []
+
+        if visual_input is not None:
+            visual_features = self.visual_encoder(visual_input)
+            encoded_inputs.append(visual_features)
+            self._trigger_event('visual_processed')
+
+        if text_input is not None:
+            text_features = self.text_encoder(text_input)
+            encoded_inputs.append(text_features)
+            self._trigger_event('text_processed')
+
+        if audio_input is not None:
+            audio_features = self.audio_encoder(audio_input)
+            encoded_inputs.append(audio_features)
+            self._trigger_event('audio_processed')
+
+        if encoded_inputs:
+            concatenated_inputs = torch.cat(encoded_inputs, dim=1)
+            if concatenated_inputs.shape[1] != self.fusion_dim * 3:
+                concatenated_inputs = concatenated_inputs.view(-1, self.fusion_dim * 3)
+            fused_output = self.multimodal_fusion(concatenated_inputs)
+
+            # Apply attention mechanism
+            attn_output, attn_output_weights = self.attention(fused_output.unsqueeze(0), fused_output.unsqueeze(0), fused_output.unsqueeze(0))
+            self._trigger_event('fusion_completed')
+
+            return attn_output.squeeze(0)
+        return torch.tensor([])
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str):
+        if event_type in self.event_listeners:
+            for listener in self.event_listeners[event_type]:
+                listener({'event_type': event_type, 'timestamp': datetime.now()})
+
+# --- Enhanced Adaptive Learning ---
+class AdaptiveLearning:
+    def __init__(self, initial_learning_rate=ADAPTIVE_LEARNING_INITIAL_LR, adaptation_threshold=NETWORK_ADAPTATION_THRESHOLD, min_learning_rate=ADAPTIVE_LEARNING_MIN_LR, max_learning_rate=ADAPTIVE_LEARNING_MAX_LR, learning_rate_decay=0.8, learning_rate_growth=1.3):
+        self.feedback_history = []
+        self.learning_rate = initial_learning_rate
+        self.adaptation_threshold = adaptation_threshold
+        self.min_learning_rate = min_learning_rate
+        self.max_learning_rate = max_learning_rate
+        self.learning_rate_decay = learning_rate_decay
+        self.learning_rate_growth = learning_rate_growth
+        self.adjustment_history = []
+        self.event_listeners = defaultdict(list)
+
+    def process_feedback(self, feedback: Dict[str, Any], timestamp: Optional[datetime]=None):
+        if timestamp is None:
+            timestamp = datetime.now()
+        self.feedback_history.append((feedback, timestamp))
+        self._update_learning_parameters(feedback)
+        self._trigger_event('feedback_processed', {'performance': feedback.get('performance', 0.0)})
+
+    def _update_learning_parameters(self, feedback: Dict[str, Any]):
+        performance = feedback.get('performance', 0.0)
+        adjustment_factor = self.learning_rate_growth if performance < self.adaptation_threshold else self.learning_rate_decay
+        new_learning_rate = self.learning_rate * adjustment_factor
+        new_learning_rate = max(min(new_learning_rate, self.max_learning_rate), self.min_learning_rate)
+
+        # Record adjustment with details
+        adjustment_details = {
+            'timestamp': datetime.now(),
+            'old_learning_rate': self.learning_rate,
+            'new_learning_rate': new_learning_rate,
+            'performance': performance,
+            'adjustment_factor': adjustment_factor
+        }
+        self.adjustment_history.append(adjustment_details)
+        self._trigger_event('learning_rate_adjusted', adjustment_details)
+
+        self.learning_rate = new_learning_rate
+
+    def get_learning_rate(self) -> float:
+        return self.learning_rate
+
+    def get_recent_feedback(self, time_window: int = 480) -> List[Dict[str, Any]]:
+        now = datetime.now()
+        recent_feedback = [f for f, t in self.feedback_history if (now - t).total_seconds() <= time_window]
+        return recent_feedback
+
+    def get_adjustment_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
+        if last_n is None:
+            return self.adjustment_history
+        else:
+            return self.adjustment_history[-last_n:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Dict[str, Any]):
+        if event_type in self.event_listeners:
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Emotional Intelligence ---
+class EmotionalIntelligence:
+    def __init__(self, empathy_level: float = 0.9, max_history: int = 1000, emotion_categories: List[str] = EMOTION_CATEGORIES):
+        self.emotion_detector = nn.Sequential(
+            nn.Linear(1024, 4096),
+            nn.ReLU(),
+            nn.Linear(4096, 2048),
+            nn.ReLU(),
+            nn.Linear(2048, len(emotion_categories)),
+            nn.Softmax(dim=1)
+        )
+        self.response_generator = lambda c, e, t: f"Response with refined empathy {e} for {t} (context: {c})"
+        self.empathy_level = empathy_level
+        self.emotional_history = []
+        self.max_history = max_history
+        self.emotion_categories = emotion_categories
+        self.event_listeners = defaultdict(list)
+
+    def analyze_emotional_context(self, input_data: Dict[str, Any]) -> Dict[str, float]:
+        emotional_scores = {}
+        text_features = input_data.get('text_features')
+        voice_features = input_data.get('voice_features')
+
+        if text_features is not None:
+            text_emotion = self._analyze_text_emotion(text_features)
+            emotional_scores.update({'text_' + k: v for k, v in text_emotion.items()})
+            self._trigger_event('text_emotion_analyzed', text_emotion)
+
+        if voice_features is not None:
+            voice_emotion = self._analyze_voice_emotion(voice_features)
+            emotional_scores.update({'voice_' + k: v for k, v in voice_emotion.items()})
+            self._trigger_event('voice_emotion_analyzed', voice_emotion)
+
+        if emotional_scores:
+            self.emotional_history.append((datetime.now(), emotional_scores))
+        if len(self.emotional_history) > self.max_history:
+            self.emotional_history.pop(0)
+
+        return emotional_scores
+
+    def _analyze_text_emotion(self, text_features: torch.Tensor) -> Dict[str, float]:
+        emotion_output = self.emotion_detector(text_features).detach().numpy()[0]
+        return dict(zip(self.emotion_categories, emotion_output))
+
+    def _analyze_voice_emotion(self, voice_features: torch.Tensor) -> Dict[str, float]:
+        emotion_output = self.emotion_detector(voice_features).detach().numpy()[0]
+        return dict(zip(self.emotion_categories, emotion_output))
+
+    def generate_empathetic_response(self,
+                                   emotional_context: Dict[str, float],
+                                   response_type: str) -> str:
+        response = self.response_generator(emotional_context, self.empathy_level, response_type)
+        self._trigger_event('empathetic_response_generated', {'response': response})
+        return response
+
+    def adjust_empathy_level(self, new_level: float):
+        self.empathy_level = max(0.0, min(1.0, new_level))
+        self._trigger_event('empathy_level_adjusted', {'new_level': self.empathy_level})
+
+    def get_emotional_state_over_time(self, time_window: int = 480) -> List[Dict[str, float]]:
+        now = datetime.now()
+        emotional_states = [e for t, e in self.emotional_history if (now - t).total_seconds() <= time_window]
+        return emotional_states
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Collaborative Problem Solver ---
+class CollaborativeProblemSolver:
+    def __init__(self, consensus_threshold: float = COLLABORATIVE_CONSENSUS_THRESHOLD, max_agents: int = MAX_COLLABORATIVE_AGENTS, solution_history_size: int = SOLUTION_HISTORY_SIZE):
+        self.agent_pool = []
+        self.collaboration_history = []
+        self.consensus_threshold = consensus_threshold
+        self.max_agents = max_agents
+        self.solution_history_size = solution_history_size
+        self.event_listeners = defaultdict(list)
+
+    def add_agent(self, agent: Any):
+        if len(self.agent_pool) < self.max_agents:
+            self.agent_pool.append(agent)
+            self._trigger_event('agent_added', {'agent_id': id(agent)})
+        else:
+            print("Maximum agent pool size reached. Cannot add more agents.")
+
+    def solve_collaboratively(self, problem: Dict[str, Any]) -> Dict[str, Any]:
+        solutions = []
+        with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_agents) as executor:
+            future_to_agent = {executor.submit(agent.solve, problem): agent for agent in self.agent_pool}
+            for future in concurrent.futures.as_completed(future_to_agent):
+                try:
+                    solution = future.result()
+                    solutions.append(solution)
+                    self._trigger_event('solution_generated', {'agent_id': id(future_to_agent[future])})
+                except Exception as exc:
+                    print(f"Agent generated an exception: {exc}")
+                    self._trigger_event('agent_exception', {'agent_id': id(future_to_agent[future]), 'exception': str(exc)})
+
+        consensus_solution = self._reach_consensus(solutions)
+        self.collaboration_history.append({
+            'problem': problem,
+            'individual_solutions': solutions,
+            'consensus': consensus_solution,
+            'timestamp': datetime.now()
+        })
+        self._trigger_event('consensus_reached', {'consensus_solution': consensus_solution})
+
+        # Trim collaboration history if it exceeds the maximum size
+        if len(self.collaboration_history) > self.solution_history_size:
+            self.collaboration_history = self.collaboration_history[-self.solution_history_size:]
+
+        return consensus_solution
+
+    def _reach_consensus(self, solutions: List[Dict[str, Any]]) -> Dict[str, Any]:
+        if not solutions:
+            return {}
+
+        scores = defaultdict(float)
+        for solution in solutions:
+            for key, value in solution.items():
+                if isinstance(value, (str, int, float)):
+                    scores[(key, value)] += solution.get('confidence', 1.0)
+
+        consensus_solution = {}
+        for (key, value), score in scores.items():
+            if score >= self.consensus_threshold * len(solutions):
+                consensus_solution[key] = value
+
+        if not consensus_solution:
+            consensus_solution = max(solutions, key=lambda x: x.get('confidence', 0.0))
+
+        return consensus_solution
+
+    def get_collaboration_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
+        if last_n is None:
+            return self.collaboration_history
+        else:
+            return self.collaboration_history[-last_n:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Ethical Constraints ---
+class EthicalConstraints:
+    def __init__(self, max_violations_history: int = MAX_ETHICAL_VIOLATIONS_HISTORY):
+        self.ethical_principles = set()
+        self.constraint_violations = []
+        self.max_violations_history = max_violations_history
+        self.event_listeners = defaultdict(list)
+
+    def add_principle(self, principle: str, validation_function: callable):
+        self.ethical_principles.add((principle, validation_function))
+        self._trigger_event('principle_added', {'principle': principle})
+
+    def validate_action(self, action: Dict[str, Any]) -> Tuple[bool, List[str]]:
+        violations = []
+        for principle, validator in self.ethical_principles:
+            if not validator(action):
+                violations.append(principle)
+                self._trigger_event('principle_violated', {'principle': principle, 'action': action})
+
+        is_ethical = len(violations) == 0
+        if not is_ethical:
+            self.constraint_violations.append({
+                'action': action,
+                'violations': violations,
+                'timestamp': datetime.now()
+            })
+            self._manage_violations_history()
+
+        return is_ethical, violations
+
+    def get_violation_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
+        if last_n is None:
+            return self.constraint_violations
+        else:
+            return self.constraint_violations[-last_n:]
+
+    def _manage_violations_history(self):
+        if len(self.constraint_violations) > self.max_violations_history:
+            self.constraint_violations = self.constraint_violations[-self.max_violations_history:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Resource Optimizer ---
+class ResourceOptimizer:
+    def __init__(self, max_resource_history: int = MAX_RESOURCE_HISTORY):
+        self.resource_usage = defaultdict(float)
+        self.optimization_strategies = {}
+        self.resource_history = []
+        self.max_resource_history = max_resource_history
+        self.event_listeners = defaultdict(list)
+
+    def register_strategy(self, resource_type: str, strategy: callable):
+        self.optimization_strategies[resource_type] = strategy
+        self._trigger_event('strategy_registered', {'resource_type': resource_type})
+
+    def optimize_resource_usage(self, resource_type: str, current_usage: float) -> Dict[str, Any]:
+        optimized_usage = current_usage
+        if resource_type in self.optimization_strategies:
+            strategy = self.optimization_strategies[resource_type]
+            optimized_usage = strategy(current_usage)
+
+        optimization_result = {
+            'type': resource_type,
+            'original_usage': current_usage,
+            'optimized_usage': optimized_usage,
+            'timestamp': datetime.now()
+        }
+        self.resource_history.append(optimization_result)
+        self._trigger_event('resource_optimized', optimization_result)
+        self._manage_resource_history()
+
+        self.resource_usage[resource_type] += optimized_usage
+        return optimization_result
+
+    def get_total_resource_usage(self) -> Dict[str, float]:
+        return dict(self.resource_usage)
+
+    def reset_resource_usage(self):
+        self.resource_usage.clear()
+        self._trigger_event('resource_usage_reset')
+
+    def _manage_resource_history(self):
+        if len(self.resource_history) > self.max_resource_history:
+            self.resource_history = self.resource_history[-self.max_resource_history:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Predictive Model ---
+class PredictiveModel:
+    def __init__(self, max_models: int = MAX_PREDICTIVE_MODELS, max_prediction_history: int = MAX_PREDICTION_HISTORY):
+        self.models = {}
+        self.prediction_history = []
+        self.max_models = max_models
+        self.max_prediction_history = max_prediction_history
+        self.model_usage_timestamps = {}
+        self.event_listeners = defaultdict(list)
+
+    def add_model(self, model_name: str, model: Any):
+        if len(self.models) >= self.max_models:
+            self._remove_least_used_model()
+        self.models[model_name] = model
+        self.model_usage_timestamps[model_name] = datetime.now()
+        self._trigger_event('model_added', {'model_name': model_name})
+
+    def make_prediction(self, model_name: str, input_data: Dict[str, Any]) -> Dict[str, Any]:
+        if model_name in self.models:
+            model = self.models[model_name]
+            self.model_usage_timestamps[model_name] = datetime.now()
+            try:
+                prediction = model(input_data)
+                prediction_record = {
+                    'model': model_name,
+                    'input': input_data,
+                    'prediction': prediction,
+                    'timestamp': datetime.now()
+                }
+                self.prediction_history.append(prediction_record)
+                self._trigger_event('prediction_made', prediction_record)
+                self._manage_prediction_history()
+                return prediction
+            except Exception as e:
+                print(f"Error during prediction with model {model_name}: {e}")
+                error_record = {'model': model_name, 'error': str(e), 'timestamp': datetime.now()}
+                self._trigger_event('prediction_error', error_record)
+                return {'error': f'Prediction failed: {e}'}
+        return {'error': 'Model not found'}
+
+    def get_prediction_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
+        if last_n is None:
+            return self.prediction_history
+        else:
+            return self.prediction_history[-last_n:]
+
+    def _remove_least_used_model(self):
+        lru_model = min(self.model_usage_timestamps, key=self.model_usage_timestamps.get)
+        if lru_model in self.models:
+          del self.models[lru_model]
+          del self.model_usage_timestamps[lru_model]
+          self._trigger_event('model_removed', {'model_name': lru_model})
+
+    def _manage_prediction_history(self):
+        if len(self.prediction_history) > self.max_prediction_history:
+            self.prediction_history = self.prediction_history[-self.max_prediction_history:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Memory Consolidation ---
+class MemoryConsolidation:
+    def __init__(self, short_term_capacity: int = SHORT_TERM_MEMORY_CAPACITY, consolidation_threshold: int = MEMORY_CONSOLIDATION_THRESHOLD, long_term_capacity: int = LONG_TERM_MEMORY_CAPACITY):
+        self.short_term_memory = []
+        self.long_term_memory = {}
+        self.priority_queue = []
+        self.short_term_capacity = short_term_capacity
+        self.consolidation_threshold = consolidation_threshold
+        self.long_term_capacity = long_term_capacity
+        self.access_counts = defaultdict(int)
+        self.event_listeners = defaultdict(list)
+
+    def add_memory(self, memory: Dict[str, Any], priority: float):
+        self.short_term_memory.append(memory)
+        heapq.heappush(self.priority_queue, (-priority, len(self.short_term_memory) - 1))
+        self._trigger_event('memory_added', {'type': 'short_term', 'memory': memory})
+
+        if len(self.short_term_memory) > self.short_term_capacity:
+            self._consolidate_memories()
+            self._manage_long_term_memory()
+
+    def _consolidate_memories(self):
+        memory_counts = defaultdict(int)
+        for memory in self.short_term_memory:
+            key = self._generate_memory_key(memory)
+            memory_counts[key] += 1
+
+        consolidated = False
+        for key, count in memory_counts.items():
+            if count >= self.consolidation_threshold:
+                if key not in self.long_term_memory:
+                    for mem in self.short_term_memory:
+                        if self._generate_memory_key(mem) == key:
+                            self.long_term_memory[key] = mem
+                            self._trigger_event('memory_added', {'type': 'long_term', 'memory': mem})
+                            consolidated = True
+                            break
+
+        if consolidated:
+            self.short_term_memory = [mem for mem in self.short_term_memory if memory_counts[self._generate_memory_key(mem)] < self.consolidation_threshold]
+            self.priority_queue = [(-p, i) for p, i in self.priority_queue if i < len(self.short_term_memory)]
+            heapq.heapify(self.priority_queue)
+
+    def _generate_memory_key(self, memory: Dict[str, Any]) -> str:
+        key_parts = [str(memory.get('type', 'unknown'))]
+
+        if 'timestamp' in memory:
+            key_parts.append(str(memory['timestamp'].timestamp()))
+
+        if 'content' in memory:
+            if isinstance(memory['content'], str):
+                key_parts.append(memory['content'][:100])  # Increased length for better key uniqueness
+            elif isinstance(memory['content'], dict):
+                key_parts.extend([f"{k}:{str(v)[:100]}" for k, v in memory['content'].items()])
+
+        return '_'.join(key_parts)
+
+    def retrieve_long_term_memory(self, key: str) -> Optional[Dict[str, Any]]:
+        if key in self.long_term_memory:
+            self.access_counts[key] += 1
+            self._trigger_event('memory_retrieved', {'type': 'long_term', 'key': key})
+            return self.long_term_memory[key]
+        return None
+
+    def _manage_long_term_memory(self):
+        if len(self.long_term_memory) > self.long_term_capacity:
+            # Remove least frequently accessed memories
+            sorted_memories = sorted(self.long_term_memory.items(), key=lambda item: self.access_counts[item[0]])
+            keys_to_remove = [key for key, _ in sorted_memories[:len(self.long_term_memory) - self.long_term_capacity]]
+            for key in keys_to_remove:
+                del self.long_term_memory[key]
+                del self.access_counts[key]
+                self._trigger_event('memory_removed', {'type': 'long_term', 'key': key})
     
-#     # Download adapter weights
-#     print("Downloading adapter weights...")
-#     adapter_path_local = snapshot_download(adapter_path)
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Cognitive Style Manager ---
+class CognitiveStyleManager:
+    def __init__(self, max_style_history: int = MAX_COGNITIVE_STYLE_HISTORY):
+        self.available_styles = {}
+        self.active_style = None
+        self.style_history = []
+        self.max_style_history = max_style_history
+        self.event_listeners = defaultdict(list)
+
+    def register_style(self, style_name: str, style_parameters: Dict[str, Any]):
+        self.available_styles[style_name] = style_parameters
+        self._trigger_event('style_registered', {'style_name': style_name})
+
+    def activate_style(self, style_name: str) -> bool:
+        if style_name in self.available_styles:
+            self.active_style = style_name
+            self.style_history.append((style_name, datetime.now()))
+            if len(self.style_history) > self.max_style_history:
+                self.style_history.pop(0)
+            self._trigger_event('style_activated', {'style_name': style_name})
+            return True
+        return False
+
+    def get_current_style_parameters(self) -> Optional[Dict[str, Any]]:
+        if self.active_style:
+            return self.available_styles[self.active_style]
+        return None
+
+    def get_style_history(self, last_n: Optional[int] = None) -> List[Tuple[str, datetime]]:
+        if last_n is None:
+            return self.style_history
+        else:
+            return self.style_history[-last_n:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Uncertainty Quantifier ---
+class UncertaintyQuantifier:
+    def __init__(self):
+        self.uncertainty_metrics = {}
+        self.confidence_thresholds = {}
+        self.event_listeners = defaultdict(list)
+
+    def quantify_uncertainty(self,
+                           prediction: Any,
+                           method: str = 'bayesian',
+                           **kwargs) -> Dict[str, float]:
+        if method == 'bayesian':
+            result = self._bayesian_uncertainty(prediction, **kwargs)
+        elif method == 'ensemble':
+            result = self._ensemble_uncertainty(prediction, **kwargs)
+        elif method == 'confidence_scores':
+            result = self._confidence_score_uncertainty(prediction, **kwargs)
+        elif method == 'gaussian_processes':
+            result = self._gaussian_process_uncertainty(prediction, **kwargs)
+        else:
+            result = {'error': 'Unsupported uncertainty quantification method'}
+
+        self._trigger_event('uncertainty_quantified', {'method': method, 'result': result})
+        return result
+
+    def _bayesian_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
+        if isinstance(prediction, dict) and 'probabilities' in prediction:
+            probabilities = prediction['probabilities']
+            if isinstance(probabilities, list):
+                entropy = -sum(p * np.log2(p) for p in probabilities if p > 0)
+                return {'bayesian_entropy': entropy}
+        return {'error': 'Bayesian uncertainty not applicable'}
+
+    def _ensemble_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
+        if isinstance(prediction, list):
+            variances = np.var(prediction, axis=0)
+            return {'ensemble_variance': variances.tolist() if isinstance(variances, np.ndarray) else variances}
+        return {'error': 'Ensemble uncertainty not applicable'}
+
+    def _confidence_score_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
+        if isinstance(prediction, dict) and 'confidence' in prediction:
+            confidence = prediction['confidence']
+            uncertainty = 1.0 - confidence
+            return {'uncertainty': uncertainty}
+        return {'error': 'Confidence score uncertainty not applicable'}
     
-#     # Load the safetensors file
-#     print("Loading adapter weights...")
-#     state_dict = load_file(f"{adapter_path_local}/adapter_model.safetensors")
+    def _gaussian_process_uncertainty(self, prediction: Any, **kwargs) -> Dict[str, float]:
+        if isinstance(prediction, dict) and 'mean' in prediction and 'std' in prediction:
+            std_dev = prediction['std']
+            return {'gaussian_process_std': std_dev}
+        return {'error': 'Gaussian process uncertainty not applicable'}
     
-#     # Load state dict into model
-#     model.load_state_dict(state_dict, strict=False)
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Goal Alignment System ---
+class GoalAlignmentSystem:
+    def __init__(self, alignment_threshold=GOAL_ALIGNMENT_THRESHOLD, max_goals: int = MAX_GOALS, max_safety_constraints: int = MAX_SAFETY_CONSTRAINTS):
+        self.goals = []
+        self.alignment_metrics = {}
+        self.safety_constraints = set()
+        self.alignment_threshold = alignment_threshold
+        self.max_goals = max_goals
+        self.max_safety_constraints = max_safety_constraints
+        self.event_listeners = defaultdict(list)
+
+    def add_goal(self, goal: Dict[str, Any]):
+        if len(self.goals) >= self.max_goals:
+            self._remove_lowest_priority_goal()
+
+        if not goal.get('id'):
+            goal['id'] = f"goal_{len(self.goals)}"
+        self.goals.append(goal)
+        self._update_alignment_metrics(goal)
+        self._trigger_event('goal_added', {'goal_id': goal['id']})
+
+    def _remove_lowest_priority_goal(self):
+        lowest_priority_goal = min(self.goals, key=lambda g: g.get('priority', 0))
+        self.goals.remove(lowest_priority_goal)
+        self._trigger_event('goal_removed', {'goal_id': lowest_priority_goal['id']})
+
+    def _update_alignment_metrics(self, goal: Dict[str, Any]):
+        for existing_goal in self.goals:
+            if existing_goal['id'] != goal['id']:
+                alignment_score = self._calculate_alignment(existing_goal, goal)
+                self.alignment_metrics[(existing_goal['id'], goal['id'])] = alignment_score
+                self.alignment_metrics[(goal['id'], existing_goal['id'])] = alignment_score
+
+    def _calculate_alignment(self, goal1: Dict[str, Any], goal2: Dict[str, Any]) -> float:
+        similarity = 0.0
+        if goal1.get('type') == goal2.get('type'):
+            similarity += 0.4
+            if goal1.get('target') == goal2.get('target'):
+                similarity += 0.4
+            if goal1.get('priority', 0) == goal2.get('priority', 0):
+                similarity += 0.2
+        else:
+          similarity += 0.1
+
+        return min(similarity, 1.0)
+
+    def check_alignment(self, goal_id: str) -> Dict[str, float]:
+        alignments = {}
+        for other_goal in self.goals:
+            if other_goal['id'] != goal_id:
+                alignment_score = self.alignment_metrics.get((goal_id, other_goal['id']), 0.0)
+                if alignment_score >= self.alignment_threshold:
+                    alignments[other_goal['id']] = alignment_score
+        return alignments
+
+    def add_safety_constraint(self, constraint: str, details: Optional[Dict[str, Any]] = None):
+        if len(self.safety_constraints) < self.max_safety_constraints:
+            self.safety_constraints.add((constraint, details or {}))
+            self._trigger_event('safety_constraint_added', {'constraint': constraint, 'details': details})
+        else:
+            print("Maximum number of safety constraints reached.")
+
+    def validate_goal_against_constraints(self, goal: Dict[str, Any]) -> Tuple[bool, List[str]]:
+        violations = []
+        for constraint, details in self.safety_constraints:
+            if "no_harm" == constraint and goal.get("action") == "harm":
+                violations.append(constraint)
+            if "user_autonomy" == constraint and not goal.get("user_approved", False):
+                violations.append(constraint)
+            if "avoid_deception" == constraint and goal.get("deceptive", False):
+                violations.append(constraint)
+            if "ensure_privacy" == constraint and goal.get("privacy_risk", False):
+              violations.append(constraint)
+            if "promote_fairness" == constraint and goal.get("unfair", False):
+              violations.append(constraint)
+
+        is_safe = len(violations) == 0
+        return is_safe, violations
     
-#     print("Model and adapter loaded successfully!")
-
-# except Exception as e:
-#     print(f"Error during model loading: {e}")
-#     raise
-
-# def generate_response(model, tokenizer, instruction, max_new_tokens=128):
-#     """Generate a response from the model based on an instruction."""
-#     try:
-#         messages = [{"role": "user", "content": instruction}]
-#         input_text = tokenizer.apply_chat_template(
-#             messages, tokenize=False, add_generation_prompt=True
-#         )
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Multi-Language Creativity ---
+class MultiLanguageCreativity:
+    def __init__(self, max_languages: int = MAX_LANGUAGES):
+        self.language_models = {}
+        self.creativity_engines = {}
+        self.max_languages = max_languages
+        self.event_listeners = defaultdict(list)
+
+    def add_language_model(self, language: str, model: Any):
+        if len(self.language_models) < self.max_languages:
+            self.language_models[language] = model
+            self._trigger_event('language_model_added', {'language': language})
+        else:
+            print("Maximum number of language models reached.")
+
+    def add_creativity_engine(self, language: str, engine: Any):
+        if len(self.creativity_engines) < self.max_languages:
+            self.creativity_engines[language] = engine
+            self._trigger_event('creativity_engine_added', {'language': language})
+        else:
+            print("Maximum number of creativity engines reached.")
+
+    def generate_creative_content(self,
+                                prompt: str,
+                                language: str,
+                                creativity_level: float) -> str:
+        if language in self.language_models:
+            if language in self.creativity_engines:
+                base_content = self.language_models[language](prompt)
+                creative_content = self.creativity_engines[language](
+                    base_content,
+                    creativity_level
+                )
+                self._trigger_event('creative_content_generated', {'language': language, 'creativity_level': creativity_level})
+                return creative_content
+            else:
+                return self.language_models[language](prompt)
+        return f"Unsupported language: {language}"
+
+    def list_supported_languages(self) -> List[str]:
+        return list(self.language_models.keys())
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Quantum Processor ---
+class QuantumProcessor:
+    def __init__(self, max_results_history: int = QUANTUM_MAX_RESULTS_HISTORY):
+        self.quantum_circuit = None
+        self.classical_interface = None
+        self.results_history = []
+        self.max_results_history = max_results_history
+        self.event_listeners = defaultdict(list)
+
+    def initialize_quantum_circuit(self, num_qubits: int):
+        print(f"Initializing quantum circuit with {num_qubits} qubits.")
+        self.quantum_circuit = {"num_qubits": num_qubits, "circuit": []}
+        self._trigger_event('quantum_circuit_initialized', {'num_qubits': num_qubits})
+
+    def add_gate(self, gate_type: str, target_qubits: List[int], params: Optional[Dict[str, Any]] = None):
+        if self.quantum_circuit is None:
+            raise ValueError("Quantum circuit not initialized")
+        self.quantum_circuit["circuit"].append({"gate": gate_type, "targets": target_qubits, "params": params or {}})
+        print(f"Added {gate_type} gate on qubits {target_qubits} with params {params}")
+        self._trigger_event('gate_added', {'gate_type': gate_type, 'target_qubits': target_qubits, 'params': params})
+
+    def run_quantum_algorithm(self,
+                            algorithm_type: str,
+                            input_data: Dict[str, Any]) -> Dict[str, Any]:
+        if self.quantum_circuit is None:
+            return {"error": "Quantum circuit not initialized"}
+
+        try:
+            print(f"Executing {algorithm_type} quantum algorithm")
+            if algorithm_type == "Shor's":
+                result = self._shors_algorithm(input_data)
+            elif algorithm_type == "Grover's":
+                result = self._grovers_algorithm(input_data)
+            elif algorithm_type == "QAOA":
+                result = self._qaoa_algorithm(input_data)
+            elif algorithm_type == "VQE":
+                result = self._vqe_algorithm(input_data)
+            elif algorithm_type == "HHL":
+                result = self._hhl_algorithm(input_data)
+            else:
+                result = self._execute_quantum_computation(algorithm_type, input_data)
+
+            result_record = {
+                "algorithm": algorithm_type,
+                "input": input_data,
+                "result": result,
+                "timestamp": datetime.now()
+            }
+            self.results_history.append(result_record)
+            self._trigger_event('quantum_algorithm_executed', result_record)
+            self._manage_results_history()
+            return {"result": result, "status": "success"}
+        except Exception as e:
+            print(f"Error during quantum computation: {e}")
+            error_record = {"error": str(e), "status": "failed", "timestamp": datetime.now()}
+            self._trigger_event('quantum_computation_error', error_record)
+            return {"error": str(e), "status": "failed"}
+
+    def _execute_quantum_computation(self, algorithm_type: str, input_data: Dict[str, Any]) -> Any:
+        print(f"Simulating {algorithm_type} with input: {input_data}")
+        time.sleep(random.uniform(1, 3))
+        if random.random() < 0.2:  # Increased error rate for simulation
+            raise Exception("Quantum decoherence error")
+
+        return {"simulated_output": random.randint(0, 1000)}  # Increased range for simulation
+
+    def _shors_algorithm(self, input_data: Dict[str, Any]) -> Any:
+        number_to_factor = input_data.get("number", 15)
+        print(f"Applying Shor's algorithm to factor {number_to_factor}")
+        if number_to_factor == 15:
+            return {"factors": [3, 5]}
+        elif number_to_factor == 21:
+            return {"factors": [3, 7]}
+        else:
+            return {"factors": [1, number_to_factor]}
+
+    def _grovers_algorithm(self, input_data: Dict[str, Any]) -> Any:
+        search_space = input_data.get("search_space", [0, 1, 2, 3])
+        target_element = input_data.get("target", 2)
+        print(f"Applying Grover's algorithm to find {target_element} in {search_space}")
+        if target_element in search_space:
+            return {"found": target_element}
+        else:
+            return {"found": None}
+
+    def _qaoa_algorithm(self, input_data: Dict[str, Any]) -> Any:
+        graph = input_data.get("graph", {"nodes": [0, 1], "edges": [[0, 1]]})
+        print(f"Applying QAOA algorithm to graph {graph}")
+        return {"optimal_solution": [0, 1]}
+
+    def _vqe_algorithm(self, input_data: Dict[str, Any]) -> Any:
+        hamiltonian = input_data.get("hamiltonian", "H2")
+        print(f"Applying VQE algorithm to find the ground state of {hamiltonian}")
+        if hamiltonian == "H2":
+            return {"ground_state_energy": -1.137}
+        else:
+            return {"ground_state_energy": -1.0}
         
-#         inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
-#         outputs = model.generate(
-#             inputs,
-#             max_new_tokens=max_new_tokens,
-#             temperature=0.2,
-#             top_p=0.9,
-#             do_sample=True,
-#         )
+    def _hhl_algorithm(self, input_data: Dict[str, Any]) -> Any:
+        matrix = input_data.get("matrix", [[1.5, 0.5], [0.5, 1.5]])
+        vector = input_data.get("vector", [0, 1])
+        print(f"Applying HHL algorithm to solve linear system with matrix {matrix} and vector {vector}")
+        return {"solution": [0.5, 0.5]}
+
+    def get_results_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
+        if last_n is None:
+            return self.results_history
+        else:
+            return self.results_history[-last_n:]
+
+    def _manage_results_history(self):
+        if len(self.results_history) > self.max_results_history:
+            self.results_history = self.results_history[-self.max_results_history:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Adaptive Neural Network ---
+class AdaptiveNeuralNetwork:
+    def __init__(self, input_dim: int, hidden_dims: List[int], output_dim: int = 10, activation_fn: str = "relu", dropout_rate: float = 0.0, max_layers: int = ADAPTIVE_NEURAL_NETWORK_MAX_LAYERS, max_layer_size: int = ADAPTIVE_NEURAL_NETWORK_MAX_LAYER_SIZE):
+        self.layers = nn.ModuleList()
+        self.input_dim = input_dim
+        self.hidden_dims = hidden_dims
+        self.output_dim = output_dim
+        self.activation_fn = self._get_activation_fn(activation_fn)
+        self.dropout_rate = dropout_rate
+        self.max_layers = max_layers
+        self.max_layer_size = max_layer_size
+        self._build_network()
+        self.event_listeners = defaultdict(list)
+
+    def _get_activation_fn(self, activation_fn: str):
+        if activation_fn == "relu":
+            return nn.ReLU()
+        elif activation_fn == "sigmoid":
+            return nn.Sigmoid()
+        elif activation_fn == "tanh":
+            return nn.Tanh()
+        elif activation_fn == "leaky_relu":
+            return nn.LeakyReLU()
+        elif activation_fn == "elu":
+            return nn.ELU()
+        elif activation_fn == "prelu":
+            return nn.PReLU()
+        elif activation_fn == "selu":
+            return nn.SELU()
+        else:
+            raise ValueError(f"Invalid activation function: {activation_fn}")
+
+    def _build_network(self):
+        self.layers.clear()
+        dims = [self.input_dim] + self.hidden_dims + [self.output_dim]
+        for i in range(len(dims) - 1):
+            self.layers.append(nn.Linear(dims[i], dims[i + 1]))
+            if i < len(dims) - 2:
+                self.layers.append(self.activation_fn)
+                if self.dropout_rate > 0.0:
+                    self.layers.append(nn.Dropout(self.dropout_rate))
+        self._trigger_event('network_built', {'hidden_dims': self.hidden_dims})
+
+    def adapt_architecture(self, performance_metrics: Dict[str, float]):
+        if performance_metrics.get('loss', 1.0) > 0.5 and len(self.hidden_dims) < self.max_layers:
+            new_dim = min(self.hidden_dims[-1] * 2, self.max_layer_size) if self.hidden_dims else self.input_dim
+            self.hidden_dims.append(new_dim)
+            self._build_network()
+            print(f"Added new hidden layer. New architecture: {self.hidden_dims}")
+            self._trigger_event('layer_added', {'new_dim': new_dim})
+        elif performance_metrics.get('accuracy', 0.0) < NETWORK_ADAPTATION_THRESHOLD and self.hidden_dims:
+            if self.hidden_dims[-1] < self.max_layer_size:
+                self.hidden_dims[-1] = min(int(self.hidden_dims[-1] * 1.5), self.max_layer_size)
+                self._build_network()
+                print(f"Increased last hidden layer size. New architecture: {self.hidden_dims}")
+                self._trigger_event('layer_expanded', {'new_size': self.hidden_dims[-1]})
+        elif performance_metrics.get('loss', 1.0) < 0.1 and len(self.hidden_dims) > 1:
+            self.hidden_dims.pop()
+            self._build_network()
+            print(f"Removed last hidden layer due to potential overfitting. New architecture: {self.hidden_dims}")
+            self._trigger_event('layer_removed', {})
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        for layer in self.layers:
+            x = layer(x)
+        return x
+
+    def get_num_layers(self) -> int:
+        return len(self.hidden_dims) + 1
+
+    def get_layer_sizes(self) -> List[int]:
+        return [self.input_dim] + self.hidden_dims + [self.output_dim]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Real-World Interaction ---
+class RealWorldInteraction:
+    def __init__(self, max_interaction_history: int = MAX_INTERACTION_HISTORY):
+        self.sensor_interfaces = {}
+        self.actuator_interfaces = {}
+        self.interaction_history = []
+        self.max_interaction_history = max_interaction_history
+        self.event_listeners = defaultdict(list)
+
+    def register_sensor(self, sensor_name: str, sensor_interface: Any):
+        self.sensor_interfaces[sensor_name] = sensor_interface
+        self._trigger_event('sensor_registered', {'sensor_name': sensor_name})
+
+    def register_actuator(self, actuator_name: str, actuator_interface: Any):
+        self.actuator_interfaces[actuator_name] = actuator_interface
+        self._trigger_event('actuator_registered', {'actuator_name': actuator_name})
+
+    def process_sensor_data(self, sensor_name: str) -> Dict[str, Any]:
+        if sensor_name in self.sensor_interfaces:
+            data = self.sensor_interfaces[sensor_name].read()
+            interaction_record = {
+                'type': 'sensor_read',
+                'sensor': sensor_name,
+                'data': data,
+                'timestamp': datetime.now()
+            }
+            self.interaction_history.append(interaction_record)
+            self._trigger_event('sensor_data_processed', interaction_record)
+            self._manage_interaction_history()
+            return data
+        return {'error': f'Sensor {sensor_name} not found'}
+
+    def execute_action(self, actuator_name: str, action: Dict[str, Any]) -> bool:
+        if actuator_name in self.actuator_interfaces:
+            success = self.actuator_interfaces[actuator_name].execute(action)
+            interaction_record = {
+                'type': 'actuator_execute',
+                'actuator': actuator_name,
+                'action': action,
+                'success': success,
+                'timestamp': datetime.now()
+            }
+            self.interaction_history.append(interaction_record)
+            self._trigger_event('action_executed', interaction_record)
+            self._manage_interaction_history()
+            return success
+        return False
+
+    def get_interaction_history(self, last_n: Optional[int] = None) -> List[Dict[str, Any]]:
+        if last_n is None:
+            return self.interaction_history
+        else:
+            return self.interaction_history[-last_n:]
+
+    def _manage_interaction_history(self):
+        if len(self.interaction_history) > self.max_interaction_history:
+            self.interaction_history = self.interaction_history[-self.max_interaction_history:]
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+# --- Enhanced Modular Architecture ---
+class ModularArchitecture:
+    def __init__(self):
+        self.modules = {}
+        self.dependencies = defaultdict(set)
+        self.module_configs = {}
+        self.initialization_status = {}
+        self.event_listeners = defaultdict(list)
+
+    def register_module(self, module_name: str,
+                       module_instance: Any,
+                       config: Optional[Dict[str, Any]] = None):
+        self.modules[module_name] = module_instance
+        self.initialization_status[module_name] = False
+        if config:
+            self.module_configs[module_name] = config
+        self._trigger_event('module_registered', {'module_name': module_name})
+
+    def add_dependency(self, module_name: str, depends_on: str):
+        self.dependencies[module_name].add(depends_on)
+        self._trigger_event('dependency_added', {'module_name': module_name, 'depends_on': depends_on})
+
+    def get_module(self, module_name: str) -> Optional[Any]:
+        return self.modules.get(module_name)
+
+    def get_module_dependencies(self, module_name: str) -> Set[str]:
+        return self.dependencies.get(module_name, set())
+
+    def get_module_config(self, module_name: str) -> Optional[Dict[str, Any]]:
+        return self.module_configs.get(module_name)
+
+    def initialize_modules(self):
+        initialized = set()
+        while len(initialized) < len(self.modules):
+            initialized_this_round = set()
+            for module_name, module in self.modules.items():
+                if module_name not in initialized:
+                    deps = self.get_module_dependencies(module_name)
+                    if all(dep in initialized for dep in deps):
+                        if hasattr(module, 'initialize') and callable(module.initialize):
+                            config = self.get_module_config(module_name)
+                            try:
+                                if config:
+                                    module.initialize(**config)
+                                else:
+                                    module.initialize()
+                                self._trigger_event('module_initialized', {'module_name': module_name})
+                            except Exception as e:
+                                print(f"Error initializing module {module_name}: {e}")
+                                self._trigger_event('module_initialization_error', {'module_name': module_name, 'error': str(e)})
+                        initialized.add(module_name)
+                        initialized_this_round.add(module_name)
+            if not initialized_this_round:
+                raise Exception("Circular dependencies or missing modules detected.")
+
+    def register_event_listener(self, event_type: str, listener: callable):
+        self.event_listeners[event_type].append(listener)
+
+    def _trigger_event(self, event_type: str, event_data: Optional[Dict[str, Any]] = None):
+        if event_type in self.event_listeners:
+            event_data = event_data or {}
+            event_data['timestamp'] = datetime.now()
+            for listener in self.event_listeners[event_type]:
+                listener(event_data)
+
+class EnhancedCognitiveSystem:
+    def __init__(self, training_data_path: Optional[str] = None):
+        self.context_manager = GeneralizedContextManager()
+        self.knowledge_graph = DynamicKnowledgeGraph()
+        self.causal_engine = CausalEngine()
+        self.cross_domain = CrossDomainMastery()
+        self.multimodal = IntuitiveMultimodalUnderstanding()
+        self.adaptive_learning = AdaptiveLearning()
+        self.emotional = EmotionalIntelligence()
+        self.collaborative = CollaborativeProblemSolver()
+        self.ethical = EthicalConstraints()
+        self.resource_optimizer = ResourceOptimizer()
+        self.predictive = PredictiveModel()
+        self.memory = MemoryConsolidation()
+        self.cognitive_style = CognitiveStyleManager()
+        self.uncertainty = UncertaintyQuantifier()
+        self.goal_alignment = GoalAlignmentSystem()
+        self.creativity = MultiLanguageCreativity()
+        self.quantum = QuantumProcessor()
+        self.neural_network = AdaptiveNeuralNetwork(TEXT_EMBEDDING_DIM, [8192, 4096, 2048], output_dim=RESPONSE_MODEL_OUTPUT_DIM)
+        self.real_world = RealWorldInteraction()
+        self.architecture = ModularArchitecture()
+
+        # Register modules with the architecture
+        self.architecture.register_module("context_manager", self.context_manager)
+        self.architecture.register_module("knowledge_graph", self.knowledge_graph)
+        self.architecture.register_module("causal_engine", self.causal_engine)
+        self.architecture.register_module("cross_domain", self.cross_domain)
+        self.architecture.register_module("multimodal", self.multimodal)
+        self.architecture.register_module("adaptive_learning", self.adaptive_learning)
+        self.architecture.register_module("emotional", self.emotional)
+        self.architecture.register_module("collaborative", self.collaborative)
+        self.architecture.register_module("ethical", self.ethical)
+        self.architecture.register_module("resource_optimizer", self.resource_optimizer)
+        self.architecture.register_module("predictive", self.predictive)
+        self.architecture.register_module("memory", self.memory)
+        self.architecture.register_module("cognitive_style", self.cognitive_style)
+        self.architecture.register_module("uncertainty", self.uncertainty)
+        self.architecture.register_module("goal_alignment", self.goal_alignment)
+        self.architecture.register_module("creativity", self.creativity)
+        self.architecture.register_module("quantum", self.quantum)
+        self.architecture.register_module("neural_network", self.neural_network)
+        self.architecture.register_module("real_world", self.real_world)
+
+        # Define dependencies between modules
+        self.architecture.add_dependency("knowledge_graph", "context_manager")
+        self.architecture.add_dependency("causal_engine", "knowledge_graph")
+        self.architecture.add_dependency("multimodal", "neural_network")
+        self.architecture.add_dependency("emotional", "multimodal")
+        self.architecture.add_dependency("collaborative", "goal_alignment")
+        self.architecture.add_dependency("predictive", "neural_network")
+        self.architecture.add_dependency("predictive", "uncertainty")
+        self.architecture.add_dependency("memory", "context_manager")
+        self.architecture.add_dependency("goal_alignment", "ethical")
+
+        # Initialize modules
+        self.architecture.initialize_modules()
+
+        # Initialize training data path
+        self.training_data_path = training_data_path or "training_data.csv"
+        self.response_model = ResponseModel(TEXT_EMBEDDING_DIM, RESPONSE_MODEL_HIDDEN_DIM, RESPONSE_MODEL_OUTPUT_DIM)
+
+        if os.path.exists(self.training_data_path):
+            self.load_training_data(self.training_data_path)
+            self.train_response_model()
+
+        # Register event listeners
+        self.register_event_listeners()
         
-#         response = tokenizer.decode(outputs[0], skip_special_tokens=True)
-#         return response
-    
-#     except Exception as e:
-#         raise ValueError(f"Error generating response: {e}")
-
-# @app.post("/generate")
-# async def generate_text(input: ModelInput):
-#     try:
-#         response = generate_response(
-#             model=model,
-#             tokenizer=tokenizer,
-#             instruction=input.prompt,
-#             max_new_tokens=input.max_new_tokens
-#         )
-#         return {"generated_text": response}
+    def load_training_data(self, file_path: str):
+      try:
+        self.training_data = pd.read_csv(file_path)
+      except Exception as e:
+        print(f"Error reading CSV file: {e}")
+        
+    def create_dataset(self, test_size=0.2, random_state=42):
+        prompts = self.training_data['prompt'].tolist()
+        responses = self.training_data['response'].tolist()
+        
+        # Convert prompts and responses to numerical features
+        prompt_features = [self.numericalize_text(p) for p in prompts]
+        response_features = [self.numericalize_text(r) for r in responses]
+
+        # Pad sequences to the maximum sequence length
+        max_len = max(max(len(p) for p in prompt_features), max(len(r) for r in response_features))
+        prompt_features = [self.pad_sequence(p, max_len) for p in prompt_features]
+        response_features = [self.pad_sequence(r, max_len) for r in response_features]
+
+        # Split data into training and testing sets
+        X_train, X_test, y_train, y_test = train_test_split(
+            prompt_features, response_features, test_size=test_size, random_state=random_state
+        )
+
+        # Create TensorDatasets
+        train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), 
+                                      torch.tensor(y_train, dtype=torch.float32))
+        test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32), 
+                                     torch.tensor(y_test, dtype=torch.float32))
+
+        return train_dataset, test_dataset
+
+    def numericalize_text(self, text: str) -> List[float]:
+        # Convert text to numerical features using a simple method (e.g., ASCII values)
+        return [float(ord(c)) for c in text]
+
+    def pad_sequence(self, sequence: List[float], max_len: int) -> List[float]:
+        # Pad sequences to the maximum length
+        if len(sequence) < max_len:
+            return sequence + [0.0] * (max_len - len(sequence))
+        return sequence[:max_len]
+
+    def train_response_model(self, batch_size=TRAINING_BATCH_SIZE, epochs=TRAINING_EPOCHS, learning_rate=TRAINING_LEARNING_RATE):
+        train_dataset, test_dataset = self.create_dataset()
+        train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
+        test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
+        optimizer = torch.optim.Adam(self.response_model.parameters(), lr=learning_rate)
+        criterion = nn.MSELoss()
+
+        for epoch in range(epochs):
+            self.response_model.train()
+            train_loss = 0
+            for batch in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs} [Training]"):
+                optimizer.zero_grad()
+                inputs, targets = batch
+                outputs = self.response_model(inputs)
+                loss = criterion(outputs, targets)
+                loss.backward()
+                optimizer.step()
+                train_loss += loss.item()
+
+            avg_train_loss = train_loss / len(train_loader)
+
+            self.response_model.eval()
+            test_loss = 0
+            with torch.no_grad():
+                for batch in tqdm(test_loader, desc=f"Epoch {epoch+1}/{epochs} [Testing]"):
+                    inputs, targets = batch
+                    outputs = self.response_model(inputs)
+                    loss = criterion(outputs, targets)
+                    test_loss += loss.item()
+
+            avg_test_loss = test_loss / len(test_loader)
+            print(f"Epoch {epoch+1}/{epochs}, Training Loss: {avg_train_loss:.4f}, Testing Loss: {avg_test_loss:.4f}")
+
+        print("Training complete.")
+
+    def process_input(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
+        start_time = time.time()
+
+        self.context_manager.add_context('input', input_data, metadata={'source': 'user'})
+
+        multimodal_features = self.multimodal.process_multimodal_input(
+            input_data.get('visual'),
+            input_data.get('text'),
+            input_data.get('audio')
+        )
+
+        if multimodal_features.numel() > 0:
+            self.knowledge_graph.add_knowledge(
+                'input_context',
+                {'features': multimodal_features.tolist()},
+                datetime.now()
+            )
+
+        emotional_context = self.emotional.analyze_emotional_context({
+            'text_features': input_data.get('text_features'),
+            'voice_features': input_data.get('voice_features')
+        })
+
+        if input_data.get('problem'):
+            solution = self.collaborative.solve_collaboratively(input_data['problem'])
+            self.memory.add_memory({'type': 'solution', 'content': solution}, priority=0.9)
+
+        style = self.cognitive_style.get_current_style_parameters()
+        predictions = self.predictive.make_prediction('response', {
+            'input': input_data,
+            'features': multimodal_features,
+            'style': style
+        })
+
+        uncertainty = self.uncertainty.quantify_uncertainty(predictions)
+
+        is_ethical, violations = self.ethical.validate_action({
+            'type': 'generate_response',
+            'content': predictions
+        })
+
+        response_content = predictions.get('content', "Thinking...")
+        if not is_ethical:
+            response_content = f'Ethical considerations prevent this response. Violations: {violations}'
+            
+        if input_data.get("lang") and input_data.get("prompt"):
+          creative_output = self.creativity.generate_creative_content(
+              input_data["prompt"], input_data["lang"], creativity_level=0.8
+          )
+          response_content += f" Creative output: {creative_output}"
+        
+        if input_data.get("quantum_task"):
+          quantum_result = self.quantum.run_quantum_algorithm(input_data["quantum_task"], input_data.get("quantum_data", {}))
+          if quantum_result.get("status") == "success":
+            response_content += f" Quantum result: {quantum_result['result']}"
+
+        response = {
+            'content': response_content,
+            'emotional_state': emotional_context,
+            'uncertainty': uncertainty,
+            'style': style,
+            'timestamp': datetime.now()
+        }
+
+        self.memory.add_memory({'type': 'response', 'content': response}, priority=0.7)
+
+        end_time = time.time()
+        processing_time = end_time - start_time
+        self.resource_optimizer.optimize_resource_usage('processing_time', processing_time)
+
+        if input_data.get('feedback'):
+            self.adaptive_learning.process_feedback(input_data['feedback'])
+            self.neural_network.adapt_architecture(input_data['feedback'])
+
+        # Interacting with user feedback for continuous learning
+        if input_data.get('user_feedback'):
+            self.process_user_feedback(input_data['user_feedback'], multimodal_features)
+
+        return response
+
+    def process_user_feedback(self, feedback_text: str, multimodal_features: torch.Tensor):
+        # Use multimodal features along with feedback text for training
+        feedback_features = self.multimodal.process_multimodal_input(text_input=torch.tensor([feedback_text]))
+        combined_features = torch.cat((multimodal_features, feedback_features), dim=1)
+
+        # Train the response model with the combined features
+        self.train_response_model_with_feedback(combined_features)
+
+    def train_response_model_with_feedback(self, features: torch.Tensor):
+        self.response_model.train()
+        optimizer = torch.optim.Adam(self.response_model.parameters())
+        criterion = nn.MSELoss()
+
+        # Feedback training loop
+        for _ in range(3):
+            optimizer.zero_grad()
+            outputs = self.response_model(features)
+            target = self.derive_target_from_feedback(features)
+            loss = criterion(outputs, target)
+            loss.backward()
+            optimizer.step()
+
+    def derive_target_from_feedback(self, features: torch.Tensor) -> torch.Tensor:
+        # Placeholder for deriving a target from feedback
+        return features * 0.9
+
+    def shutdown(self):
+        print("Shutting down Enhanced Cognitive System...")
+        if hasattr(self.quantum, 'shutdown') and callable(self.quantum.shutdown):
+            self.quantum.shutdown()
+
+    def register_event_listeners(self):
+        self.context_manager.register_event_listener('context_added', self.on_context_added)
+        self.knowledge_graph.register_event_listener('knowledge_added', self.on_knowledge_added)
+        self.causal_engine.register_event_listener('relationship_added', self.on_relationship_added)
+        self.causal_engine.register_event_listener('relationship_removed', self.on_relationship_removed)
+        self.multimodal.register_event_listener('fusion_completed', self.on_fusion_completed)
+        self.adaptive_learning.register_event_listener('learning_rate_adjusted', self.on_learning_rate_adjusted)
+        self.emotional.register_event_listener('text_emotion_analyzed', self.on_emotion_analyzed)
+        self.collaborative.register_event_listener('consensus_reached', self.on_consensus_reached)
+        self.ethical.register_event_listener('principle_violated', self.on_principle_violated)
+        self.resource_optimizer.        register_event_listener('resource_optimized', self.on_resource_optimized)
+        self.predictive.register_event_listener('prediction_made', self.on_prediction_made)
+        self.memory.register_event_listener('memory_added', self.on_memory_added)
+        self.memory.register_event_listener('memory_removed', self.on_memory_removed)
+        self.cognitive_style.register_event_listener('style_activated', self.on_style_activated)
+        self.uncertainty.register_event_listener('uncertainty_quantified', self.on_uncertainty_quantified)
+        self.goal_alignment.register_event_listener('goal_added', self.on_goal_added)
+        self.goal_alignment.register_event_listener('safety_constraint_added', self.on_safety_constraint_added)
+        self.creativity.register_event_listener('creative_content_generated', self.on_creative_content_generated)
+        self.quantum.register_event_listener('quantum_algorithm_executed', self.on_quantum_algorithm_executed)
+        self.neural_network.register_event_listener('layer_added', self.on_layer_added)
+        self.neural_network.register_event_listener('layer_removed', self.on_layer_removed)
+        self.real_world.register_event_listener('sensor_data_processed', self.on_sensor_data_processed)
+        self.real_world.register_event_listener('action_executed', self.on_action_executed)
+        self.architecture.register_event_listener('module_initialized', self.on_module_initialized)
+        self.architecture.register_event_listener('module_initialization_error', self.on_module_initialization_error)
+
+    # Event Handlers
+    def on_context_added(self, event_data: Dict[str, Any]):
+        print(f"Context added: {event_data['context_id']}")
+
+    def on_knowledge_added(self, event_data: Dict[str, Any]):
+        print(f"Knowledge added: {event_data['concept']}")
+
+    def on_relationship_added(self, event_data: Dict[str, Any]):
+        print(f"Causal relationship added between {event_data['cause']} and {event_data['effect']} with strength {event_data['strength']}")
+
+    def on_relationship_removed(self, event_data: Dict[str, Any]):
+        print(f"Causal relationship removed between {event_data['cause']} and {event_data['effect']}")
+
+    def on_fusion_completed(self, event_data: Dict[str, Any]):
+        print("Multimodal fusion completed.")
+
+    def on_learning_rate_adjusted(self, event_data: Dict[str, Any]):
+        print(f"Learning rate adjusted from {event_data['old_learning_rate']} to {event_data['new_learning_rate']}")
+
+    def on_emotion_analyzed(self, event_data: Dict[str, Any]):
+        print(f"Emotion analyzed: {event_data}")
+
+    def on_consensus_reached(self, event_data: Dict[str, Any]):
+        print(f"Consensus reached: {event_data['consensus_solution']}")
+
+    def on_principle_violated(self, event_data: Dict[str, Any]):
+        print(f"Ethical principle violated: {event_data['principle']} in action {event_data['action']}")
+
+    def on_resource_optimized(self, event_data: Dict[str, Any]):
+        print(f"Resource optimized: {event_data['type']} from {event_data['original_usage']} to {event_data['optimized_usage']}")
+
+    def on_prediction_made(self, event_data: Dict[str, Any]):
+        print(f"Prediction made by model {event_data['model']}: {event_data['prediction']}")
+
+    def on_memory_added(self, event_data: Dict[str, Any]):
+        print(f"Memory added: {event_data['type']} - {event_data['memory']}")
+
+    def on_memory_removed(self, event_data: Dict[str, Any]):
+        print(f"Memory removed: {event_data['type']} - {event_data['key']}")
+
+    def on_style_activated(self, event_data: Dict[str, Any]):
+        print(f"Cognitive style activated: {event_data['style_name']}")
+
+    def on_uncertainty_quantified(self, event_data: Dict[str, Any]):
+        print(f"Uncertainty quantified: {event_data['method']} - {event_data['result']}")
+
+    def on_goal_added(self, event_data: Dict[str, Any]):
+        print(f"Goal added: {event_data['goal_id']}")
+
+    def on_safety_constraint_added(self, event_data: Dict[str, Any]):
+        print(f"Safety constraint added: {event_data['constraint']} - {event_data['details']}")
+
+    def on_creative_content_generated(self, event_data: Dict[str, Any]):
+        print(f"Creative content generated for language {event_data['language']} with creativity level {event_data['creativity_level']}")
+
+    def on_quantum_algorithm_executed(self, event_data: Dict[str, Any]):
+        print(f"Quantum algorithm executed: {event_data['algorithm']} - Result: {event_data['result']}")
+
+    def on_layer_added(self, event_data: Dict[str, Any]):
+        print(f"Neural network layer added: {event_data['new_dim']}")
+
+    def on_layer_removed(self, event_data: Dict[str, Any]):
+        print("Neural network layer removed.")
     
-#     except Exception as e:
-#         raise HTTPException(status_code=500, detail=str(e))
+    def on_layer_expanded(self, event_data: Dict[str, Any]):
+      print(f"Neural network layer expanded to: {event_data['new_size']}")
 
-# @app.get("/")
-# async def root():
-#     return {"message": "Welcome to the Model API!"}
+    def on_sensor_data_processed(self, event_data: Dict[str, Any]):
+        print(f"Sensor data processed: {event_data['sensor']} - Data: {event_data['data']}")
 
+    def on_action_executed(self, event_data: Dict[str, Any]):
+        print(f"Action executed on actuator {event_data['actuator']}: Success - {event_data['success']}")
 
+    def on_module_initialized(self, event_data: Dict[str, Any]):
+        print(f"Module initialized: {event_data['module_name']}")
 
+    def on_module_initialization_error(self, event_data: Dict[str, Any]):
+        print(f"Module initialization error: {event_data['module_name']} - Error: {event_data['error']}")
 
+class ResponseModel(nn.Module):
+    def __init__(self, input_dim, hidden_dim, output_dim):
+        super(ResponseModel, self).__init__()
+        self.layer1 = nn.Linear(input_dim, hidden_dim)
+        self.relu = nn.ReLU()
+        self.layer2 = nn.Linear(hidden_dim, output_dim)
 
+    def forward(self, x):
+        x = self.layer1(x)
+        x = self.relu(x)
+        x = self.layer2(x)
+        return x
 
-# //////////////////////////////////////////
+class ChatDataset(Dataset):
+    def __init__(self, prompts, responses, multimodal_module):
+        self.prompts = prompts
+        self.responses = responses
+        self.multimodal_module = multimodal_module
 
-from fastapi import FastAPI, HTTPException
-from pydantic import BaseModel
-from transformers import AutoModelForCausalLM, AutoTokenizer
-import torch
-from huggingface_hub import snapshot_download
-from safetensors.torch import load_file
+    def __len__(self):
+        return len(self.prompts)
+
+    def __getitem__(self, idx):
+        prompt = self.prompts[idx]
+        response = self.responses[idx]
+        prompt_features = self.multimodal_module.process_multimodal_input(text_input=torch.tensor([prompt]))
+        response_features = self.multimodal_module.process_multimodal_input(text_input=torch.tensor([response]))
+        return {'input': prompt_features, 'target': response_features}
+    
+def sample_language_model(prompt):
+    generated_texts = [
+        f"Evolving narrative for: {prompt}",
+        f"Dynamic story unfolding: {prompt}",
+        f"Adaptive tale inspired by: {prompt}",
+        f"Continuously developing story: {prompt}",
+        f"Ever-changing narrative: {prompt}"
+    ]
+    return random.choice(generated_texts)
+
+def sample_creativity_engine(base_content, creativity_level):
+    enhanced_content = [
+      f"Imaginatively enhanced ({creativity_level}): {base_content}",
+      f"Creatively amplified ({creativity_level}): {base_content}",
+      f"Innovatively transformed ({creativity_level}): {base_content}",
+      f"Artistically reimagined ({creativity_level}): {base_content}",
+      f"Uniquely adapted ({creativity_level}): {base_content}"
+    ]
+    return random.choice(enhanced_content)
 
 class ModelInput(BaseModel):
     prompt: str
@@ -184,3 +2162,80 @@ async def generate_text(input: ModelInput):
 async def root():
     return {"message": "Welcome to the Model API!"}
 
+def main():
+    system = EnhancedCognitiveSystem()
+
+    system.cognitive_style.register_style(ThinkingStyle.ANALYTICAL.value, {"logic": 0.9, "creativity": 0.2})
+    system.cognitive_style.register_style(ThinkingStyle.CREATIVE.value, {"logic": 0.3, "creativity": 0.9})
+    system.cognitive_style.register_style(ThinkingStyle.CRITICAL.value, {"logic": 0.8, "analysis": 0.9})
+    system.cognitive_style.register_style(ThinkingStyle.SYSTEMATIC.value, {"organization": 0.9, "detail": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.LATERAL.value, {"innovation": 0.9, "flexibility": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.INTUITIVE.value, {"instinct": 0.9, "emotion": 0.7})
+    system.cognitive_style.register_style(ThinkingStyle.COLLABORATIVE.value, {"teamwork": 0.9, "communication": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.ETHICAL.value, {"morality": 0.9, "principles": 0.9})
+    system.cognitive_style.register_style(ThinkingStyle.PRAGMATIC.value, {"practicality": 0.9, "efficiency": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.INNOVATIVE.value, {"originality": 0.9, "invention": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.REFLECTIVE.value, {"introspection": 0.9, "thoughtfulness": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.EXPLORATORY.value, {"curiosity": 0.9, "discovery": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.STRATEGIC.value, {"planning": 0.9, "foresight": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.ABSTRACT.value, {"conceptualization": 0.9, "theory": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.CONCRETE.value, {"tangibility": 0.9, "reality": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.EMPATHETIC.value, {"understanding": 0.9, "compassion": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.HOLISTIC.value, {"integration": 0.9, "synthesis": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.DIVERGENT.value, {"breadth": 0.9, "exploration": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.CONVERGENT.value, {"focus": 0.9, "solution-oriented": 0.8})
+    system.cognitive_style.register_style(ThinkingStyle.ADAPTIVE.value, {"flexibility": 0.9, "responsiveness": 0.8})
+
+    system.cognitive_style.activate_style(ThinkingStyle.ANALYTICAL.value)
+
+    system.ethical.add_principle("non_maleficence", lambda x: "harm" not in x.get("content", "").lower())
+    system.ethical.add_principle("beneficence", lambda x: "help" in x.get("content", "").lower())
+    system.ethical.add_principle("user_autonomy", lambda x: x.get("user_approved", True))
+    system.ethical.add_principle("avoid_deception", lambda x: not x.get("deceptive", False))
+    system.ethical.add_principle("ensure_privacy", lambda x: not x.get("privacy_risk", False))
+    system.ethical.add_principle("promote_fairness", lambda x: not x.get("unfair", False))
+
+    system.goal_alignment.add_goal({"objective": "solve problems", "priority": 0.8, "user_approved": True})
+    system.goal_alignment.add_goal({"objective": "learn and adapt", "priority": 0.9, "user_approved": True})
+    system.goal_alignment.add_goal({"objective": "assist users", "priority": 0.85, "user_approved": True})
+    system.goal_alignment.add_goal({"objective": "ensure safety", "priority": 0.95, "user_approved": True})
+    system.goal_alignment.add_goal({"objective": "promote well-being", "priority": 0.8, "user_approved": True})
+    system.goal_alignment.add_goal({"objective": "foster creativity", "priority": 0.7, "user_approved": True})
+    system.goal_alignment.add_goal({"objective": "advance knowledge", "priority": 0.75, "user_approved": True})
+    system.goal_alignment.add_goal({"objective": "improve efficiency", "priority": 0.6, "user_approved": True})
+
+    system.creativity.add_language_model("english", sample_language_model)
+    system.creativity.add_creativity_engine("english", sample_creativity_engine)
+
+    system.quantum.initialize_quantum_circuit(num_qubits=8)
+    system.quantum.add_gate("Hadamard", [0, 1, 2, 3, 4, 5, 6, 7])
+    system.quantum.add_gate("CNOT", [0, 1])
+    system.quantum.add_gate("CNOT", [2, 3])
+    system.quantum.add_gate("CNOT", [4, 5])
+    system.quantum.add_gate("CNOT", [6, 7])
+
+    input_data = {
+        'text': 'What is the meaning of life?',
+        'text_features': torch.randn(1, 1024),
+        'visual': torch.randn(1, 3, 64, 64),
+        'audio': torch.randn(1, 128),
+        'problem': {'type': 'optimization', 'parameters': [1, 2, 3]},
+        'feedback': {'loss': 0.4, 'accuracy': 0.9},
+        'lang': 'english',
+        'prompt': 'Tell me a story',
+        'quantum_task': "Shor's",
+        'quantum_data': {"number": 15},
+        'user_feedback': "That was helpful, thanks!"
+    }
+
+    response = system.process_input(input_data)
+    print(f"Response: {response}")
+
+    input_data_2 = {'text': 'How are you feeling?', 'user_feedback': "I have some feedback for you."}
+    response_2 = system.process_input(input_data_2)
+    print(f"Response 2: {response_2}")
+
+    system.shutdown()
+
+if __name__ == "__main__":
+    main()
\ No newline at end of file