Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
@@ -40,6 +136,10 @@ try:
|
|
40 |
# Load state dict into model
|
41 |
model.load_state_dict(state_dict, strict=False)
|
42 |
|
|
|
|
|
|
|
|
|
43 |
print("Model and adapter loaded successfully!")
|
44 |
|
45 |
except Exception as e:
|
@@ -85,4 +185,4 @@ async def generate_text(input: ModelInput):
|
|
85 |
|
86 |
@app.get("/")
|
87 |
async def root():
|
88 |
-
return {"message": "Welcome to the Model API!"}
|
|
|
1 |
+
# from fastapi import FastAPI, HTTPException
|
2 |
+
# from pydantic import BaseModel
|
3 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
# import torch
|
5 |
+
# from huggingface_hub import snapshot_download
|
6 |
+
# from safetensors.torch import load_file
|
7 |
+
|
8 |
+
# class ModelInput(BaseModel):
|
9 |
+
# prompt: str
|
10 |
+
# max_new_tokens: int = 50
|
11 |
+
|
12 |
+
# app = FastAPI()
|
13 |
+
|
14 |
+
# # Define model paths
|
15 |
+
# base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
16 |
+
# adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
17 |
+
|
18 |
+
# try:
|
19 |
+
# # First load the base model
|
20 |
+
# print("Loading base model...")
|
21 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
# base_model_path,
|
23 |
+
# torch_dtype=torch.float16,
|
24 |
+
# trust_remote_code=True,
|
25 |
+
# device_map="auto"
|
26 |
+
# )
|
27 |
+
|
28 |
+
# # Load tokenizer from base model
|
29 |
+
# print("Loading tokenizer...")
|
30 |
+
# tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
31 |
+
|
32 |
+
# # Download adapter weights
|
33 |
+
# print("Downloading adapter weights...")
|
34 |
+
# adapter_path_local = snapshot_download(adapter_path)
|
35 |
+
|
36 |
+
# # Load the safetensors file
|
37 |
+
# print("Loading adapter weights...")
|
38 |
+
# state_dict = load_file(f"{adapter_path_local}/adapter_model.safetensors")
|
39 |
+
|
40 |
+
# # Load state dict into model
|
41 |
+
# model.load_state_dict(state_dict, strict=False)
|
42 |
+
|
43 |
+
# print("Model and adapter loaded successfully!")
|
44 |
+
|
45 |
+
# except Exception as e:
|
46 |
+
# print(f"Error during model loading: {e}")
|
47 |
+
# raise
|
48 |
+
|
49 |
+
# def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
50 |
+
# """Generate a response from the model based on an instruction."""
|
51 |
+
# try:
|
52 |
+
# messages = [{"role": "user", "content": instruction}]
|
53 |
+
# input_text = tokenizer.apply_chat_template(
|
54 |
+
# messages, tokenize=False, add_generation_prompt=True
|
55 |
+
# )
|
56 |
+
|
57 |
+
# inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
58 |
+
# outputs = model.generate(
|
59 |
+
# inputs,
|
60 |
+
# max_new_tokens=max_new_tokens,
|
61 |
+
# temperature=0.2,
|
62 |
+
# top_p=0.9,
|
63 |
+
# do_sample=True,
|
64 |
+
# )
|
65 |
+
|
66 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
67 |
+
# return response
|
68 |
+
|
69 |
+
# except Exception as e:
|
70 |
+
# raise ValueError(f"Error generating response: {e}")
|
71 |
+
|
72 |
+
# @app.post("/generate")
|
73 |
+
# async def generate_text(input: ModelInput):
|
74 |
+
# try:
|
75 |
+
# response = generate_response(
|
76 |
+
# model=model,
|
77 |
+
# tokenizer=tokenizer,
|
78 |
+
# instruction=input.prompt,
|
79 |
+
# max_new_tokens=input.max_new_tokens
|
80 |
+
# )
|
81 |
+
# return {"generated_text": response}
|
82 |
+
|
83 |
+
# except Exception as e:
|
84 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
85 |
+
|
86 |
+
# @app.get("/")
|
87 |
+
# async def root():
|
88 |
+
# return {"message": "Welcome to the Model API!"}
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
# //////////////////////////////////////////
|
96 |
+
|
97 |
from fastapi import FastAPI, HTTPException
|
98 |
from pydantic import BaseModel
|
99 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
136 |
# Load state dict into model
|
137 |
model.load_state_dict(state_dict, strict=False)
|
138 |
|
139 |
+
# Optional: Set the model to use the adapter
|
140 |
+
# In case you are using adapters, you need to activate them
|
141 |
+
model.set_active_adapters(adapter_path) # Activating the adapter
|
142 |
+
|
143 |
print("Model and adapter loaded successfully!")
|
144 |
|
145 |
except Exception as e:
|
|
|
185 |
|
186 |
@app.get("/")
|
187 |
async def root():
|
188 |
+
return {"message": "Welcome to the Model API!"}
|