Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,10 @@ import torch
|
|
11 |
import numpy as np
|
12 |
import networkx as nx
|
13 |
from collections import Counter
|
|
|
|
|
|
|
|
|
14 |
|
15 |
@dataclass
|
16 |
class ChatMessage:
|
@@ -27,13 +31,15 @@ class XylariaChat:
|
|
27 |
raise ValueError("HuggingFace token not found in environment variables")
|
28 |
|
29 |
self.client = InferenceClient(
|
30 |
-
model="Qwen/
|
31 |
-
|
32 |
)
|
33 |
|
34 |
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
35 |
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
36 |
|
|
|
|
|
37 |
self.conversation_history = []
|
38 |
self.persistent_memory = []
|
39 |
self.memory_embeddings = None
|
@@ -47,7 +53,7 @@ class XylariaChat:
|
|
47 |
"bias_detection": 0.0,
|
48 |
"strategy_adjustment": ""
|
49 |
}
|
50 |
-
|
51 |
self.internal_state = {
|
52 |
"emotions": {
|
53 |
"valence": 0.5,
|
@@ -76,7 +82,7 @@ class XylariaChat:
|
|
76 |
]
|
77 |
|
78 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
79 |
-
|
80 |
self.causal_rules_db = {
|
81 |
"rain": ["wet roads", "flooding"],
|
82 |
"fire": ["heat", "smoke"],
|
@@ -90,6 +96,11 @@ class XylariaChat:
|
|
90 |
"democracy": "government by the people",
|
91 |
"photosynthesis": "process used by plants to convert light to energy"
|
92 |
}
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
95 |
for emotion, delta in emotion_deltas.items():
|
@@ -117,7 +128,7 @@ class XylariaChat:
|
|
117 |
|
118 |
def update_belief_system(self, statement, belief_score):
|
119 |
self.belief_system[statement] = belief_score
|
120 |
-
|
121 |
def dynamic_belief_update(self, user_message):
|
122 |
sentences = [s.strip() for s in user_message.split('.') if s.strip()]
|
123 |
sentence_counts = Counter(sentences)
|
@@ -223,7 +234,7 @@ class XylariaChat:
|
|
223 |
return "Current strategy is effective. Continue with the current approach."
|
224 |
else:
|
225 |
return " ".join(adjustments)
|
226 |
-
|
227 |
def introspect(self):
|
228 |
introspection_report = "Introspection Report:\n"
|
229 |
introspection_report += f" Current Emotional State:\n"
|
@@ -273,7 +284,7 @@ class XylariaChat:
|
|
273 |
response = "I'm feeling quite energized and ready to assist! " + response
|
274 |
else:
|
275 |
response = "I'm in a good mood and happy to help. " + response
|
276 |
-
|
277 |
if curiosity > 0.7:
|
278 |
response += " I'm very curious about this topic, could you tell me more?"
|
279 |
if frustration > 0.5:
|
@@ -299,7 +310,7 @@ class XylariaChat:
|
|
299 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
300 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
301 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
302 |
-
|
303 |
if "learn more" in feedback_lower:
|
304 |
for goal in self.goals:
|
305 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
@@ -310,7 +321,7 @@ class XylariaChat:
|
|
310 |
if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
|
311 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
312 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
313 |
-
|
314 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
315 |
for goal in self.goals:
|
316 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
@@ -387,8 +398,8 @@ class XylariaChat:
|
|
387 |
|
388 |
try:
|
389 |
self.client = InferenceClient(
|
390 |
-
model="Qwen/
|
391 |
-
|
392 |
)
|
393 |
except Exception as e:
|
394 |
print(f"Error resetting API client: {e}")
|
@@ -422,6 +433,13 @@ class XylariaChat:
|
|
422 |
except Exception as e:
|
423 |
return f"Error processing image: {str(e)}"
|
424 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
def perform_math_ocr(self, image_path):
|
426 |
try:
|
427 |
img = Image.open(image_path)
|
@@ -429,9 +447,58 @@ class XylariaChat:
|
|
429 |
return text.strip()
|
430 |
except Exception as e:
|
431 |
return f"Error during Math OCR: {e}"
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
def get_response(self, user_input, image=None):
|
434 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
messages = []
|
436 |
|
437 |
messages.append(ChatMessage(
|
@@ -458,7 +525,7 @@ class XylariaChat:
|
|
458 |
role="user",
|
459 |
content=user_input
|
460 |
).to_dict())
|
461 |
-
|
462 |
entities = []
|
463 |
relationships = []
|
464 |
|
@@ -468,19 +535,19 @@ class XylariaChat:
|
|
468 |
extracted_relationships = self.extract_relationships(message['content'])
|
469 |
entities.extend(extracted_entities)
|
470 |
relationships.extend(extracted_relationships)
|
471 |
-
|
472 |
self.update_knowledge_graph(entities, relationships)
|
473 |
self.run_metacognitive_layer()
|
474 |
-
|
475 |
for message in messages:
|
476 |
if message['role'] == 'user':
|
477 |
self.dynamic_belief_update(message['content'])
|
478 |
-
|
479 |
for cause, effects in self.causal_rules_db.items():
|
480 |
if any(cause in msg['content'].lower() for msg in messages if msg['role'] == 'user') and any(
|
481 |
effect in msg['content'].lower() for msg in messages for effect in effects):
|
482 |
self.store_information("Causal Inference", f"It seems {cause} might be related to {', '.join(effects)}.")
|
483 |
-
|
484 |
for concept, generalization in self.concept_generalizations.items():
|
485 |
if any(concept in msg['content'].lower() for msg in messages if msg['role'] == 'user'):
|
486 |
self.store_information("Inferred Knowledge", f"This reminds me of a general principle: {generalization}.")
|
@@ -488,28 +555,54 @@ class XylariaChat:
|
|
488 |
if self.internal_state["emotions"]["curiosity"] > 0.8 and any("?" in msg['content'] for msg in messages if msg['role'] == 'user'):
|
489 |
print("Simulating external knowledge seeking...")
|
490 |
self.store_information("External Knowledge", "This is a placeholder for external information I would have found")
|
491 |
-
|
492 |
self.store_information("User Input", user_input)
|
493 |
|
494 |
input_tokens = sum(len(msg['content'].split()) for msg in messages)
|
495 |
max_new_tokens = 16384 - input_tokens - 50
|
496 |
|
497 |
max_new_tokens = min(max_new_tokens, 10020)
|
498 |
-
|
499 |
-
stream = self.client.chat_completion(
|
500 |
-
messages=messages,
|
501 |
-
model="Qwen/QwQ-32B-Preview",
|
502 |
-
temperature=0.7,
|
503 |
-
max_tokens=max_new_tokens,
|
504 |
-
top_p=0.9,
|
505 |
-
stream=True
|
506 |
-
)
|
507 |
|
508 |
-
|
509 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
except Exception as e:
|
511 |
print(f"Detailed error in get_response: {e}")
|
512 |
-
return f"Error generating response: {str(e)}"
|
513 |
|
514 |
def extract_entities(self, text):
|
515 |
words = text.split()
|
@@ -526,7 +619,7 @@ class XylariaChat:
|
|
526 |
if words[i].istitle() and words[i+2].istitle():
|
527 |
relationships.append((words[i], words[i+1], words[i+2]))
|
528 |
return relationships
|
529 |
-
|
530 |
def messages_to_prompt(self, messages):
|
531 |
prompt = ""
|
532 |
for msg in messages:
|
@@ -540,14 +633,165 @@ class XylariaChat:
|
|
540 |
return prompt
|
541 |
|
542 |
def create_interface(self):
|
543 |
-
|
544 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
545 |
ocr_text = ""
|
546 |
if math_ocr_image_path:
|
547 |
ocr_text = self.perform_math_ocr(math_ocr_image_path)
|
548 |
if ocr_text.startswith("Error"):
|
549 |
updated_history = chat_history + [[message, ocr_text]]
|
550 |
-
yield
|
551 |
return
|
552 |
else:
|
553 |
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
|
@@ -556,10 +800,10 @@ class XylariaChat:
|
|
556 |
response_stream = self.get_response(message, image_filepath)
|
557 |
else:
|
558 |
response_stream = self.get_response(message)
|
559 |
-
|
560 |
if isinstance(response_stream, str):
|
561 |
updated_history = chat_history + [[message, response_stream]]
|
562 |
-
yield
|
563 |
return
|
564 |
|
565 |
full_response = ""
|
@@ -570,13 +814,13 @@ class XylariaChat:
|
|
570 |
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
571 |
chunk_content = chunk.choices[0].delta.content
|
572 |
full_response += chunk_content
|
573 |
-
|
574 |
updated_history[-1][1] = full_response
|
575 |
-
yield
|
576 |
except Exception as e:
|
577 |
print(f"Streaming error: {e}")
|
578 |
updated_history[-1][1] = f"Error during response: {e}"
|
579 |
-
yield
|
580 |
return
|
581 |
|
582 |
full_response = self.adjust_response_based_on_state(full_response)
|
@@ -609,14 +853,14 @@ class XylariaChat:
|
|
609 |
else:
|
610 |
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
611 |
engagement_delta = 0.05
|
612 |
-
|
613 |
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
|
614 |
emotion_deltas.update({"curiosity": 0.3})
|
615 |
cognitive_load_deltas.update({"processing_intensity": 0.1})
|
616 |
engagement_delta = 0.2
|
617 |
-
|
618 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
619 |
-
|
620 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
621 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
622 |
|
@@ -624,41 +868,145 @@ class XylariaChat:
|
|
624 |
self.conversation_history = self.conversation_history[-10:]
|
625 |
|
626 |
custom_css = """
|
627 |
-
@import url('https://fonts.googleapis.com/css2?family=
|
628 |
-
|
629 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
630 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
631 |
.chatbot-container .message {
|
632 |
-
font-family: '
|
|
|
|
|
633 |
}
|
|
|
634 |
.gradio-container input,
|
635 |
.gradio-container textarea,
|
636 |
.gradio-container button {
|
637 |
-
font-family: '
|
|
|
|
|
638 |
}
|
|
|
639 |
.image-container {
|
640 |
display: flex;
|
641 |
gap: 10px;
|
642 |
-
margin-bottom:
|
|
|
643 |
}
|
|
|
644 |
.image-upload {
|
645 |
-
border:
|
646 |
border-radius: 8px;
|
647 |
-
padding:
|
648 |
-
background-color: #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
}
|
|
|
650 |
.image-preview {
|
651 |
-
max-width:
|
652 |
-
max-height:
|
653 |
border-radius: 8px;
|
|
|
654 |
}
|
|
|
655 |
.clear-button {
|
656 |
display: none;
|
657 |
}
|
|
|
658 |
.chatbot-container .message {
|
659 |
opacity: 0;
|
660 |
animation: fadeIn 0.5s ease-in-out forwards;
|
661 |
}
|
|
|
662 |
@keyframes fadeIn {
|
663 |
from {
|
664 |
opacity: 0;
|
@@ -669,43 +1017,151 @@ class XylariaChat:
|
|
669 |
transform: translateY(0);
|
670 |
}
|
671 |
}
|
|
|
672 |
.gr-accordion-button {
|
673 |
background-color: #f0f0f0 !important;
|
674 |
border-radius: 8px !important;
|
675 |
-
padding:
|
676 |
margin-bottom: 10px !important;
|
677 |
transition: all 0.3s ease !important;
|
678 |
cursor: pointer !important;
|
|
|
|
|
679 |
}
|
|
|
680 |
.gr-accordion-button:hover {
|
681 |
background-color: #e0e0e0 !important;
|
682 |
-
box-shadow: 0px
|
683 |
}
|
|
|
684 |
.gr-accordion-active .gr-accordion-button {
|
685 |
background-color: #d0d0d0 !important;
|
686 |
-
box-shadow: 0px 4px
|
687 |
}
|
|
|
688 |
.gr-accordion-content {
|
689 |
transition: max-height 0.3s ease-in-out !important;
|
690 |
overflow: hidden !important;
|
691 |
max-height: 0 !important;
|
692 |
}
|
|
|
693 |
.gr-accordion-active .gr-accordion-content {
|
694 |
max-height: 500px !important;
|
695 |
}
|
|
|
696 |
.gr-accordion {
|
697 |
display: flex;
|
698 |
flex-direction: column-reverse;
|
699 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
700 |
"""
|
701 |
|
702 |
-
with gr.Blocks(theme=
|
|
|
|
|
|
|
|
|
|
|
703 |
with gr.Column():
|
704 |
chatbot = gr.Chatbot(
|
705 |
label="Xylaria 1.5 Senoa",
|
706 |
-
height=
|
707 |
show_copy_button=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
)
|
|
|
709 |
|
710 |
with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
|
711 |
with gr.Row(elem_classes="image-container"):
|
@@ -734,18 +1190,19 @@ class XylariaChat:
|
|
734 |
btn = gr.Button("Send", scale=1)
|
735 |
|
736 |
with gr.Row():
|
737 |
-
clear = gr.Button("Clear Conversation")
|
738 |
clear_memory = gr.Button("Clear Memory")
|
739 |
|
|
|
740 |
btn.click(
|
741 |
fn=streaming_response,
|
742 |
-
inputs=[txt, chatbot, img, math_ocr_img],
|
743 |
-
outputs=[
|
744 |
)
|
745 |
txt.submit(
|
746 |
fn=streaming_response,
|
747 |
-
inputs=[txt, chatbot, img, math_ocr_img],
|
748 |
-
outputs=[
|
749 |
)
|
750 |
|
751 |
clear.click(
|
|
|
11 |
import numpy as np
|
12 |
import networkx as nx
|
13 |
from collections import Counter
|
14 |
+
import asyncio
|
15 |
+
import edge_tts
|
16 |
+
import speech_recognition as sr
|
17 |
+
import random
|
18 |
|
19 |
@dataclass
|
20 |
class ChatMessage:
|
|
|
31 |
raise ValueError("HuggingFace token not found in environment variables")
|
32 |
|
33 |
self.client = InferenceClient(
|
34 |
+
model="Qwen/Qwen-32B-Preview",
|
35 |
+
token=self.hf_token
|
36 |
)
|
37 |
|
38 |
self.image_api_url = "https://api-inference.huggingface.co/models/Salesforce/blip-image-captioning-large"
|
39 |
self.image_api_headers = {"Authorization": f"Bearer {self.hf_token}"}
|
40 |
|
41 |
+
self.image_gen_client = InferenceClient("black-forest-labs/FLUX.1-schnell", token=self.hf_token)
|
42 |
+
|
43 |
self.conversation_history = []
|
44 |
self.persistent_memory = []
|
45 |
self.memory_embeddings = None
|
|
|
53 |
"bias_detection": 0.0,
|
54 |
"strategy_adjustment": ""
|
55 |
}
|
56 |
+
|
57 |
self.internal_state = {
|
58 |
"emotions": {
|
59 |
"valence": 0.5,
|
|
|
82 |
]
|
83 |
|
84 |
self.system_prompt = """You are a helpful and harmless assistant. You are Xylaria developed by Sk Md Saad Amin. You should think step-by-step """
|
85 |
+
|
86 |
self.causal_rules_db = {
|
87 |
"rain": ["wet roads", "flooding"],
|
88 |
"fire": ["heat", "smoke"],
|
|
|
96 |
"democracy": "government by the people",
|
97 |
"photosynthesis": "process used by plants to convert light to energy"
|
98 |
}
|
99 |
+
|
100 |
+
# === Voice Mode Initialization (Start) ===
|
101 |
+
self.voice_mode_active = False
|
102 |
+
self.selected_voice = "en-US-JennyNeural" # Default voice
|
103 |
+
# === Voice Mode Initialization (End) ===
|
104 |
|
105 |
def update_internal_state(self, emotion_deltas, cognitive_load_deltas, introspection_delta, engagement_delta):
|
106 |
for emotion, delta in emotion_deltas.items():
|
|
|
128 |
|
129 |
def update_belief_system(self, statement, belief_score):
|
130 |
self.belief_system[statement] = belief_score
|
131 |
+
|
132 |
def dynamic_belief_update(self, user_message):
|
133 |
sentences = [s.strip() for s in user_message.split('.') if s.strip()]
|
134 |
sentence_counts = Counter(sentences)
|
|
|
234 |
return "Current strategy is effective. Continue with the current approach."
|
235 |
else:
|
236 |
return " ".join(adjustments)
|
237 |
+
|
238 |
def introspect(self):
|
239 |
introspection_report = "Introspection Report:\n"
|
240 |
introspection_report += f" Current Emotional State:\n"
|
|
|
284 |
response = "I'm feeling quite energized and ready to assist! " + response
|
285 |
else:
|
286 |
response = "I'm in a good mood and happy to help. " + response
|
287 |
+
|
288 |
if curiosity > 0.7:
|
289 |
response += " I'm very curious about this topic, could you tell me more?"
|
290 |
if frustration > 0.5:
|
|
|
310 |
if goal["goal"] == "Provide helpful, informative, and contextually relevant responses":
|
311 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
312 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
313 |
+
|
314 |
if "learn more" in feedback_lower:
|
315 |
for goal in self.goals:
|
316 |
if goal["goal"] == "Actively learn and adapt from interactions to improve conversational abilities":
|
|
|
321 |
if goal["goal"] == "Maintain a coherent, engaging, and empathetic conversation flow":
|
322 |
goal["priority"] = max(goal["priority"] - 0.1, 0.0)
|
323 |
goal["progress"] = max(goal["progress"] - 0.2, 0.0)
|
324 |
+
|
325 |
if self.internal_state["emotions"]["curiosity"] > 0.8:
|
326 |
for goal in self.goals:
|
327 |
if goal["goal"] == "Identify and fill knowledge gaps by seeking external information":
|
|
|
398 |
|
399 |
try:
|
400 |
self.client = InferenceClient(
|
401 |
+
model="Qwen/Qwen-32B-Preview",
|
402 |
+
token=self.hf_token
|
403 |
)
|
404 |
except Exception as e:
|
405 |
print(f"Error resetting API client: {e}")
|
|
|
433 |
except Exception as e:
|
434 |
return f"Error processing image: {str(e)}"
|
435 |
|
436 |
+
def generate_image(self, prompt):
|
437 |
+
try:
|
438 |
+
image = self.image_gen_client.text_to_image(prompt)
|
439 |
+
return image
|
440 |
+
except Exception as e:
|
441 |
+
return f"Error generating image: {e}"
|
442 |
+
|
443 |
def perform_math_ocr(self, image_path):
|
444 |
try:
|
445 |
img = Image.open(image_path)
|
|
|
447 |
return text.strip()
|
448 |
except Exception as e:
|
449 |
return f"Error during Math OCR: {e}"
|
450 |
+
|
451 |
+
# === Voice Mode Methods (Start) ===
|
452 |
+
async def speak_text(self, text):
|
453 |
+
if not text:
|
454 |
+
return None, None
|
455 |
+
|
456 |
+
temp_file = "temp_audio.mp3"
|
457 |
+
try:
|
458 |
+
communicator = edge_tts.Communicate(text, self.selected_voice)
|
459 |
+
await communicator.save(temp_file)
|
460 |
+
return temp_file
|
461 |
+
except Exception as e:
|
462 |
+
print(f"Error during text-to-speech: {e}")
|
463 |
+
return None, None
|
464 |
+
|
465 |
+
def recognize_speech(self, timeout=10, phrase_time_limit=10):
|
466 |
+
recognizer = sr.Recognizer()
|
467 |
+
recognizer.energy_threshold = 4000
|
468 |
+
recognizer.dynamic_energy_threshold = True
|
469 |
+
|
470 |
+
with sr.Microphone() as source:
|
471 |
+
print("Listening...")
|
472 |
+
try:
|
473 |
+
audio_data = recognizer.listen(source, timeout=timeout, phrase_time_limit=phrase_time_limit)
|
474 |
+
print("Processing speech...")
|
475 |
+
text = recognizer.recognize_whisper_api(audio_data, api_key=self.hf_token)
|
476 |
+
print(f"Recognized: {text}")
|
477 |
+
return text
|
478 |
+
except sr.WaitTimeoutError:
|
479 |
+
print("No speech detected within the timeout period.")
|
480 |
+
return ""
|
481 |
+
except sr.UnknownValueError:
|
482 |
+
print("Speech recognition could not understand audio")
|
483 |
+
return ""
|
484 |
+
except sr.RequestError as e:
|
485 |
+
print(f"Could not request results from Whisper API; {e}")
|
486 |
+
return ""
|
487 |
+
except Exception as e:
|
488 |
+
print(f"An error occurred during speech recognition: {e}")
|
489 |
+
return ""
|
490 |
+
# === Voice Mode Methods (End) ===
|
491 |
+
|
492 |
def get_response(self, user_input, image=None):
|
493 |
try:
|
494 |
+
# === Voice Mode Adaptation (Start) ===
|
495 |
+
if self.voice_mode_active:
|
496 |
+
print("Voice mode is active, using speech recognition.")
|
497 |
+
user_input = self.recognize_speech() # Get input from speech
|
498 |
+
if not user_input:
|
499 |
+
return "I didn't hear anything." , None
|
500 |
+
# === Voice Mode Adaptation (End) ===
|
501 |
+
|
502 |
messages = []
|
503 |
|
504 |
messages.append(ChatMessage(
|
|
|
525 |
role="user",
|
526 |
content=user_input
|
527 |
).to_dict())
|
528 |
+
|
529 |
entities = []
|
530 |
relationships = []
|
531 |
|
|
|
535 |
extracted_relationships = self.extract_relationships(message['content'])
|
536 |
entities.extend(extracted_entities)
|
537 |
relationships.extend(extracted_relationships)
|
538 |
+
|
539 |
self.update_knowledge_graph(entities, relationships)
|
540 |
self.run_metacognitive_layer()
|
541 |
+
|
542 |
for message in messages:
|
543 |
if message['role'] == 'user':
|
544 |
self.dynamic_belief_update(message['content'])
|
545 |
+
|
546 |
for cause, effects in self.causal_rules_db.items():
|
547 |
if any(cause in msg['content'].lower() for msg in messages if msg['role'] == 'user') and any(
|
548 |
effect in msg['content'].lower() for msg in messages for effect in effects):
|
549 |
self.store_information("Causal Inference", f"It seems {cause} might be related to {', '.join(effects)}.")
|
550 |
+
|
551 |
for concept, generalization in self.concept_generalizations.items():
|
552 |
if any(concept in msg['content'].lower() for msg in messages if msg['role'] == 'user'):
|
553 |
self.store_information("Inferred Knowledge", f"This reminds me of a general principle: {generalization}.")
|
|
|
555 |
if self.internal_state["emotions"]["curiosity"] > 0.8 and any("?" in msg['content'] for msg in messages if msg['role'] == 'user'):
|
556 |
print("Simulating external knowledge seeking...")
|
557 |
self.store_information("External Knowledge", "This is a placeholder for external information I would have found")
|
558 |
+
|
559 |
self.store_information("User Input", user_input)
|
560 |
|
561 |
input_tokens = sum(len(msg['content'].split()) for msg in messages)
|
562 |
max_new_tokens = 16384 - input_tokens - 50
|
563 |
|
564 |
max_new_tokens = min(max_new_tokens, 10020)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
565 |
|
566 |
+
# === Voice Mode Output (Start) ===
|
567 |
+
if self.voice_mode_active:
|
568 |
+
stream = self.client.chat_completion(
|
569 |
+
messages=messages,
|
570 |
+
model="Qwen/Qwen-32B-Preview",
|
571 |
+
temperature=0.7,
|
572 |
+
max_tokens=max_new_tokens,
|
573 |
+
top_p=0.9,
|
574 |
+
stream=True
|
575 |
+
)
|
576 |
+
|
577 |
+
full_response = ""
|
578 |
+
for chunk in stream:
|
579 |
+
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
580 |
+
full_response += chunk.choices[0].delta.content
|
581 |
+
|
582 |
+
full_response = self.adjust_response_based_on_state(full_response)
|
583 |
+
audio_file = asyncio.run(self.speak_text(full_response))
|
584 |
+
|
585 |
+
# Update conversation history
|
586 |
+
self.conversation_history.append(ChatMessage(role="user", content=user_input).to_dict())
|
587 |
+
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
588 |
+
|
589 |
+
return full_response, audio_file
|
590 |
+
|
591 |
+
# === Voice Mode Output (End) ===
|
592 |
+
else:
|
593 |
+
stream = self.client.chat_completion(
|
594 |
+
messages=messages,
|
595 |
+
model="Qwen/Qwen-32B-Preview",
|
596 |
+
temperature=0.7,
|
597 |
+
max_tokens=max_new_tokens,
|
598 |
+
top_p=0.9,
|
599 |
+
stream=True
|
600 |
+
)
|
601 |
+
|
602 |
+
return stream
|
603 |
except Exception as e:
|
604 |
print(f"Detailed error in get_response: {e}")
|
605 |
+
return f"Error generating response: {str(e)}", None
|
606 |
|
607 |
def extract_entities(self, text):
|
608 |
words = text.split()
|
|
|
619 |
if words[i].istitle() and words[i+2].istitle():
|
620 |
relationships.append((words[i], words[i+1], words[i+2]))
|
621 |
return relationships
|
622 |
+
|
623 |
def messages_to_prompt(self, messages):
|
624 |
prompt = ""
|
625 |
for msg in messages:
|
|
|
633 |
return prompt
|
634 |
|
635 |
def create_interface(self):
|
636 |
+
# === Voice-Specific UI Elements (Start) ===
|
637 |
+
def toggle_voice_mode(active_state):
|
638 |
+
self.voice_mode_active = active_state
|
639 |
+
if self.voice_mode_active:
|
640 |
+
# Get the list of available voices
|
641 |
+
voices = asyncio.run(edge_tts.list_voices())
|
642 |
+
voice_names = [voice['ShortName'] for voice in voices]
|
643 |
+
|
644 |
+
# Select a random voice from the list
|
645 |
+
random_voice = random.choice(voice_names)
|
646 |
+
self.selected_voice = random_voice
|
647 |
+
|
648 |
+
return gr.Button.update(value="Stop Voice Mode"), gr.Dropdown.update(value=random_voice)
|
649 |
+
else:
|
650 |
+
return gr.Button.update(value="Start Voice Mode"), gr.Dropdown.update(value=self.selected_voice)
|
651 |
+
|
652 |
+
def update_selected_voice(voice_name):
|
653 |
+
self.selected_voice = voice_name
|
654 |
+
return voice_name
|
655 |
+
|
656 |
+
# === Voice-Specific UI Elements (End) ===
|
657 |
+
|
658 |
+
def streaming_response(message, chat_history, image_filepath, math_ocr_image_path, voice_mode_state, selected_voice):
|
659 |
+
if self.voice_mode_active:
|
660 |
+
response_text, audio_output = self.get_response(message)
|
661 |
+
|
662 |
+
if isinstance(response_text, str):
|
663 |
+
updated_history = chat_history + [[message, response_text]]
|
664 |
+
if audio_output:
|
665 |
+
yield updated_history, audio_output, None, None, ""
|
666 |
+
else:
|
667 |
+
yield updated_history, None, None, None, ""
|
668 |
+
else:
|
669 |
+
full_response = ""
|
670 |
+
updated_history = chat_history + [[message, ""]]
|
671 |
+
try:
|
672 |
+
for chunk in response_text:
|
673 |
+
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
674 |
+
chunk_content = chunk.choices[0].delta.content
|
675 |
+
full_response += chunk_content
|
676 |
+
updated_history[-1][1] = full_response
|
677 |
+
if audio_output:
|
678 |
+
yield updated_history, audio_output, None, None, ""
|
679 |
+
else:
|
680 |
+
yield updated_history, None, None, None, ""
|
681 |
+
except Exception as e:
|
682 |
+
print(f"Streaming error: {e}")
|
683 |
+
updated_history[-1][1] = f"Error during response: {e}"
|
684 |
+
if audio_output:
|
685 |
+
yield updated_history, audio_output, None, None, ""
|
686 |
+
else:
|
687 |
+
yield updated_history, None, None, None, ""
|
688 |
+
return
|
689 |
+
|
690 |
+
full_response = self.adjust_response_based_on_state(full_response)
|
691 |
+
|
692 |
+
audio_file = asyncio.run(self.speak_text(full_response))
|
693 |
+
|
694 |
+
self.update_goals(message)
|
695 |
+
|
696 |
+
emotion_deltas = {}
|
697 |
+
cognitive_load_deltas = {}
|
698 |
+
engagement_delta = 0
|
699 |
+
|
700 |
+
if any(word in message.lower() for word in ["sad", "unhappy", "depressed", "down"]):
|
701 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.1, "confidence": -0.1, "sadness": 0.3, "joy": -0.2})
|
702 |
+
engagement_delta = -0.1
|
703 |
+
elif any(word in message.lower() for word in ["happy", "good", "great", "excited", "amazing"]):
|
704 |
+
emotion_deltas.update({"valence": 0.2, "arousal": 0.2, "confidence": 0.1, "sadness": -0.2, "joy": 0.3})
|
705 |
+
engagement_delta = 0.2
|
706 |
+
elif any(word in message.lower() for word in ["angry", "mad", "furious", "frustrated"]):
|
707 |
+
emotion_deltas.update({"valence": -0.3, "arousal": 0.3, "dominance": -0.2, "frustration": 0.2, "sadness": 0.1, "joy": -0.1})
|
708 |
+
engagement_delta = -0.2
|
709 |
+
elif any(word in message.lower() for word in ["scared", "afraid", "fearful", "anxious"]):
|
710 |
+
emotion_deltas.update({"valence": -0.2, "arousal": 0.4, "dominance": -0.3, "confidence": -0.2, "sadness": 0.2})
|
711 |
+
engagement_delta = -0.1
|
712 |
+
elif any(word in message.lower() for word in ["surprise", "amazed", "astonished"]):
|
713 |
+
emotion_deltas.update({"valence": 0.1, "arousal": 0.5, "dominance": 0.1, "curiosity": 0.3, "sadness": -0.1, "joy": 0.1})
|
714 |
+
engagement_delta = 0.3
|
715 |
+
elif any(word in message.lower() for word in ["confused", "uncertain", "unsure"]):
|
716 |
+
cognitive_load_deltas.update({"processing_intensity": 0.2})
|
717 |
+
emotion_deltas.update({"curiosity": 0.2, "confidence": -0.1, "sadness": 0.1})
|
718 |
+
engagement_delta = 0.1
|
719 |
+
else:
|
720 |
+
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
721 |
+
engagement_delta = 0.05
|
722 |
+
|
723 |
+
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
|
724 |
+
emotion_deltas.update({"curiosity": 0.3})
|
725 |
+
cognitive_load_deltas.update({"processing_intensity": 0.1})
|
726 |
+
engagement_delta = 0.2
|
727 |
+
|
728 |
+
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
729 |
+
|
730 |
+
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
731 |
+
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
732 |
+
|
733 |
+
if len(self.conversation_history) > 10:
|
734 |
+
self.conversation_history = self.conversation_history[-10:]
|
735 |
+
|
736 |
+
if audio_file:
|
737 |
+
yield updated_history, audio_file, None, None, ""
|
738 |
+
else:
|
739 |
+
yield updated_history, None, None, None, ""
|
740 |
+
|
741 |
+
# Handling /image command for image generation
|
742 |
+
if "/image" in message:
|
743 |
+
image_prompt = message.replace("/image", "").strip()
|
744 |
+
|
745 |
+
# Updated placeholder SVG with animation and text
|
746 |
+
placeholder_image = "data:image/svg+xml," + requests.utils.quote(f'''
|
747 |
+
<svg width="256" height="256" viewBox="0 0 256 256" xmlns="http://www.w3.org/2000/svg">
|
748 |
+
<style>
|
749 |
+
rect {{
|
750 |
+
animation: fillAnimation 3s ease-in-out infinite;
|
751 |
+
}}
|
752 |
+
@keyframes fillAnimation {{
|
753 |
+
0% {{ fill: #626262; }}
|
754 |
+
50% {{ fill: #111111; }}
|
755 |
+
100% {{ fill: #626262; }}
|
756 |
+
}}
|
757 |
+
text {{
|
758 |
+
font-family: 'Helvetica Neue', Arial, sans-serif; /* Choose a good font */
|
759 |
+
font-weight: 300; /* Slightly lighter font weight */
|
760 |
+
text-shadow: 0px 2px 4px rgba(0, 0, 0, 0.4); /* Subtle shadow */
|
761 |
+
}}
|
762 |
+
</style>
|
763 |
+
<rect width="256" height="256" rx="20" fill="#888888" />
|
764 |
+
<text x="50%" y="50%" dominant-baseline="middle" text-anchor="middle" font-size="24" fill="white" opacity="0.8">
|
765 |
+
<tspan>creating your image</tspan>
|
766 |
+
<tspan x="50%" dy="1.2em">with xylaria iris</tspan>
|
767 |
+
</text>
|
768 |
+
</svg>
|
769 |
+
''')
|
770 |
+
|
771 |
+
updated_history = chat_history + [[message, gr.Image(value=placeholder_image, type="pil", visible=True)]]
|
772 |
+
yield updated_history, None, None, None, ""
|
773 |
+
|
774 |
+
try:
|
775 |
+
generated_image = self.generate_image(image_prompt)
|
776 |
+
|
777 |
+
updated_history[-1][1] = gr.Image(value=generated_image, type="pil", visible=True)
|
778 |
+
yield updated_history, None, None, None, ""
|
779 |
+
|
780 |
+
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
781 |
+
self.conversation_history.append(ChatMessage(role="assistant", content="Image generated").to_dict())
|
782 |
+
|
783 |
+
return
|
784 |
+
except Exception as e:
|
785 |
+
updated_history[-1][1] = f"Error generating image: {e}"
|
786 |
+
yield updated_history, None, None, None, ""
|
787 |
+
return
|
788 |
+
|
789 |
ocr_text = ""
|
790 |
if math_ocr_image_path:
|
791 |
ocr_text = self.perform_math_ocr(math_ocr_image_path)
|
792 |
if ocr_text.startswith("Error"):
|
793 |
updated_history = chat_history + [[message, ocr_text]]
|
794 |
+
yield updated_history, None, None, None, ""
|
795 |
return
|
796 |
else:
|
797 |
message = f"Math OCR Result: {ocr_text}\n\nUser's message: {message}"
|
|
|
800 |
response_stream = self.get_response(message, image_filepath)
|
801 |
else:
|
802 |
response_stream = self.get_response(message)
|
803 |
+
|
804 |
if isinstance(response_stream, str):
|
805 |
updated_history = chat_history + [[message, response_stream]]
|
806 |
+
yield updated_history, None, None, None, ""
|
807 |
return
|
808 |
|
809 |
full_response = ""
|
|
|
814 |
if chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.content:
|
815 |
chunk_content = chunk.choices[0].delta.content
|
816 |
full_response += chunk_content
|
817 |
+
|
818 |
updated_history[-1][1] = full_response
|
819 |
+
yield updated_history, None, None, None, ""
|
820 |
except Exception as e:
|
821 |
print(f"Streaming error: {e}")
|
822 |
updated_history[-1][1] = f"Error during response: {e}"
|
823 |
+
yield updated_history, None, None, None, ""
|
824 |
return
|
825 |
|
826 |
full_response = self.adjust_response_based_on_state(full_response)
|
|
|
853 |
else:
|
854 |
emotion_deltas.update({"valence": 0.05, "arousal": 0.05})
|
855 |
engagement_delta = 0.05
|
856 |
+
|
857 |
if "learn" in message.lower() or "explain" in message.lower() or "know more" in message.lower():
|
858 |
emotion_deltas.update({"curiosity": 0.3})
|
859 |
cognitive_load_deltas.update({"processing_intensity": 0.1})
|
860 |
engagement_delta = 0.2
|
861 |
+
|
862 |
self.update_internal_state(emotion_deltas, cognitive_load_deltas, 0.1, engagement_delta)
|
863 |
+
|
864 |
self.conversation_history.append(ChatMessage(role="user", content=message).to_dict())
|
865 |
self.conversation_history.append(ChatMessage(role="assistant", content=full_response).to_dict())
|
866 |
|
|
|
868 |
self.conversation_history = self.conversation_history[-10:]
|
869 |
|
870 |
custom_css = """
|
871 |
+
@import url('https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap');
|
872 |
+
|
873 |
+
body {
|
874 |
+
background-color: #f5f5f5;
|
875 |
+
font-family: 'Source Sans Pro', sans-serif;
|
876 |
+
}
|
877 |
+
|
878 |
+
.voice-mode-button {
|
879 |
+
background-color: #4CAF50; /* Green */
|
880 |
+
border: none;
|
881 |
+
color: white;
|
882 |
+
padding: 15px 32px;
|
883 |
+
text-align: center;
|
884 |
+
text-decoration: none;
|
885 |
+
display: inline-block;
|
886 |
+
font-size: 16px;
|
887 |
+
margin: 4px 2px;
|
888 |
+
cursor: pointer;
|
889 |
+
border-radius: 10px; /* Rounded corners */
|
890 |
+
transition: all 0.3s ease; /* Smooth transition for hover effect */
|
891 |
+
}
|
892 |
+
|
893 |
+
/* Style when voice mode is active */
|
894 |
+
.voice-mode-button.active {
|
895 |
+
background-color: #f44336; /* Red */
|
896 |
+
}
|
897 |
+
|
898 |
+
/* Hover effect */
|
899 |
+
.voice-mode-button:hover {
|
900 |
+
opacity: 0.8;
|
901 |
+
}
|
902 |
+
|
903 |
+
/* Style for the voice mode overlay */
|
904 |
+
.voice-mode-overlay {
|
905 |
+
position: fixed; /* Stay in place */
|
906 |
+
left: 0;
|
907 |
+
top: 0;
|
908 |
+
width: 100%; /* Full width */
|
909 |
+
height: 100%; /* Full height */
|
910 |
+
background-color: rgba(0, 0, 0, 0.7); /* Black w/ opacity */
|
911 |
+
z-index: 10; /* Sit on top */
|
912 |
+
display: flex;
|
913 |
+
justify-content: center;
|
914 |
+
align-items: center;
|
915 |
+
border-radius: 10px;
|
916 |
+
}
|
917 |
+
|
918 |
+
/* Style for the growing circle */
|
919 |
+
.voice-mode-circle {
|
920 |
+
width: 100px;
|
921 |
+
height: 100px;
|
922 |
+
background-color: #4CAF50;
|
923 |
+
border-radius: 50%;
|
924 |
+
display: flex;
|
925 |
+
justify-content: center;
|
926 |
+
align-items: center;
|
927 |
+
animation: grow 2s infinite;
|
928 |
}
|
929 |
+
|
930 |
+
/* Keyframes for the growing animation */
|
931 |
+
@keyframes grow {
|
932 |
+
0% {
|
933 |
+
transform: scale(1);
|
934 |
+
opacity: 0.8;
|
935 |
+
}
|
936 |
+
50% {
|
937 |
+
transform: scale(1.5);
|
938 |
+
opacity: 0.5;
|
939 |
+
}
|
940 |
+
100% {
|
941 |
+
transform: scale(1);
|
942 |
+
opacity: 0.8;
|
943 |
+
}
|
944 |
+
}
|
945 |
+
|
946 |
+
.gradio-container {
|
947 |
+
max-width: 900px;
|
948 |
+
margin: 0 auto;
|
949 |
+
border-radius: 10px;
|
950 |
+
box-shadow: 0px 4px 20px rgba(0, 0, 0, 0.1);
|
951 |
+
}
|
952 |
+
|
953 |
+
.chatbot-container {
|
954 |
+
background-color: #fff;
|
955 |
+
border-radius: 10px;
|
956 |
+
padding: 20px;
|
957 |
+
}
|
958 |
+
|
959 |
.chatbot-container .message {
|
960 |
+
font-family: 'Source Sans Pro', sans-serif;
|
961 |
+
font-size: 16px;
|
962 |
+
line-height: 1.6;
|
963 |
}
|
964 |
+
|
965 |
.gradio-container input,
|
966 |
.gradio-container textarea,
|
967 |
.gradio-container button {
|
968 |
+
font-family: 'Source Sans Pro', sans-serif;
|
969 |
+
font-size: 16px;
|
970 |
+
border-radius: 8px;
|
971 |
}
|
972 |
+
|
973 |
.image-container {
|
974 |
display: flex;
|
975 |
gap: 10px;
|
976 |
+
margin-bottom: 20px;
|
977 |
+
justify-content: center;
|
978 |
}
|
979 |
+
|
980 |
.image-upload {
|
981 |
+
border: 2px dashed #d3d3d3;
|
982 |
border-radius: 8px;
|
983 |
+
padding: 20px;
|
984 |
+
background-color: #fafafa;
|
985 |
+
text-align: center;
|
986 |
+
transition: all 0.3s ease;
|
987 |
+
}
|
988 |
+
|
989 |
+
.image-upload:hover {
|
990 |
+
background-color: #f0f0f0;
|
991 |
+
border-color: #b3b3b3;
|
992 |
}
|
993 |
+
|
994 |
.image-preview {
|
995 |
+
max-width: 150px;
|
996 |
+
max-height: 150px;
|
997 |
border-radius: 8px;
|
998 |
+
box-shadow: 0px 2px 5px rgba(0, 0, 0, 0.1);
|
999 |
}
|
1000 |
+
|
1001 |
.clear-button {
|
1002 |
display: none;
|
1003 |
}
|
1004 |
+
|
1005 |
.chatbot-container .message {
|
1006 |
opacity: 0;
|
1007 |
animation: fadeIn 0.5s ease-in-out forwards;
|
1008 |
}
|
1009 |
+
|
1010 |
@keyframes fadeIn {
|
1011 |
from {
|
1012 |
opacity: 0;
|
|
|
1017 |
transform: translateY(0);
|
1018 |
}
|
1019 |
}
|
1020 |
+
|
1021 |
.gr-accordion-button {
|
1022 |
background-color: #f0f0f0 !important;
|
1023 |
border-radius: 8px !important;
|
1024 |
+
padding: 15px !important;
|
1025 |
margin-bottom: 10px !important;
|
1026 |
transition: all 0.3s ease !important;
|
1027 |
cursor: pointer !important;
|
1028 |
+
border: none !important;
|
1029 |
+
box-shadow: 0px 2px 5px rgba(0, 0, 0, 0.05) !important;
|
1030 |
}
|
1031 |
+
|
1032 |
.gr-accordion-button:hover {
|
1033 |
background-color: #e0e0e0 !important;
|
1034 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1) !important;
|
1035 |
}
|
1036 |
+
|
1037 |
.gr-accordion-active .gr-accordion-button {
|
1038 |
background-color: #d0d0d0 !important;
|
1039 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1) !important;
|
1040 |
}
|
1041 |
+
|
1042 |
.gr-accordion-content {
|
1043 |
transition: max-height 0.3s ease-in-out !important;
|
1044 |
overflow: hidden !important;
|
1045 |
max-height: 0 !important;
|
1046 |
}
|
1047 |
+
|
1048 |
.gr-accordion-active .gr-accordion-content {
|
1049 |
max-height: 500px !important;
|
1050 |
}
|
1051 |
+
|
1052 |
.gr-accordion {
|
1053 |
display: flex;
|
1054 |
flex-direction: column-reverse;
|
1055 |
}
|
1056 |
+
|
1057 |
+
.chatbot-icon {
|
1058 |
+
width: 40px;
|
1059 |
+
height: 40px;
|
1060 |
+
border-radius: 50%;
|
1061 |
+
margin-right: 10px;
|
1062 |
+
}
|
1063 |
+
|
1064 |
+
.user-message .message-row {
|
1065 |
+
background-color: #e8f0fe;
|
1066 |
+
border-radius: 10px;
|
1067 |
+
padding: 10px;
|
1068 |
+
margin-bottom: 10px;
|
1069 |
+
border-top-right-radius: 2px;
|
1070 |
+
}
|
1071 |
+
|
1072 |
+
.assistant-message .message-row {
|
1073 |
+
background-color: #f0f0f0;
|
1074 |
+
border-radius: 10px;
|
1075 |
+
padding: 10px;
|
1076 |
+
margin-bottom: 10px;
|
1077 |
+
border-top-left-radius: 2px;
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
.user-message .message-icon {
|
1081 |
+
background: url('https://img.icons8.com/color/48/000000/user.png') no-repeat center center;
|
1082 |
+
background-size: contain;
|
1083 |
+
width: 30px;
|
1084 |
+
height: 30px;
|
1085 |
+
margin-right: 10px;
|
1086 |
+
}
|
1087 |
+
|
1088 |
+
.assistant-message .message-icon {
|
1089 |
+
background: url('https://i.ibb.co/7b7hLGH/Senoa-Icon-1.png') no-repeat center center;
|
1090 |
+
background-size: cover;
|
1091 |
+
width: 40px;
|
1092 |
+
height: 40px;
|
1093 |
+
margin-right: 10px;
|
1094 |
+
border-radius: 50%;
|
1095 |
+
}
|
1096 |
+
|
1097 |
+
.message-text {
|
1098 |
+
flex-grow: 1;
|
1099 |
+
}
|
1100 |
+
|
1101 |
+
.message-row {
|
1102 |
+
display: flex;
|
1103 |
+
align-items: center;
|
1104 |
+
}
|
1105 |
+
|
1106 |
+
.audio-container {
|
1107 |
+
display: flex;
|
1108 |
+
align-items: center;
|
1109 |
+
margin-top: 10px;
|
1110 |
+
}
|
1111 |
+
|
1112 |
+
.audio-player {
|
1113 |
+
width: 100%;
|
1114 |
+
border-radius: 15px;
|
1115 |
+
}
|
1116 |
+
|
1117 |
+
.audio-icon {
|
1118 |
+
width: 30px;
|
1119 |
+
height: 30px;
|
1120 |
+
margin-right: 10px;
|
1121 |
+
}
|
1122 |
"""
|
1123 |
|
1124 |
+
with gr.Blocks(theme=gr.themes.Soft(
|
1125 |
+
primary_hue="slate",
|
1126 |
+
secondary_hue="gray",
|
1127 |
+
neutral_hue="gray",
|
1128 |
+
font=["Source Sans Pro", "Arial", "sans-serif"],
|
1129 |
+
), css=custom_css) as demo:
|
1130 |
with gr.Column():
|
1131 |
chatbot = gr.Chatbot(
|
1132 |
label="Xylaria 1.5 Senoa",
|
1133 |
+
height=600,
|
1134 |
show_copy_button=True,
|
1135 |
+
elem_classes="chatbot-container",
|
1136 |
+
avatar_images=(
|
1137 |
+
"https://img.icons8.com/color/48/000000/user.png", # User avatar
|
1138 |
+
"https://i.ibb.co/7b7hLGH/Senoa-Icon-1.png" # Bot avatar
|
1139 |
+
)
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
# === Voice Mode UI (Start) ===
|
1143 |
+
voice_mode_btn = gr.Button("Start Voice Mode", elem_classes="voice-mode-button")
|
1144 |
+
|
1145 |
+
voices = asyncio.run(edge_tts.list_voices())
|
1146 |
+
voice_names = [voice['ShortName'] for voice in voices]
|
1147 |
+
|
1148 |
+
voice_dropdown = gr.Dropdown(
|
1149 |
+
label="Select Voice",
|
1150 |
+
choices=voice_names,
|
1151 |
+
value=self.selected_voice,
|
1152 |
+
interactive=True
|
1153 |
+
)
|
1154 |
+
voice_dropdown.input(
|
1155 |
+
fn=update_selected_voice,
|
1156 |
+
inputs=voice_dropdown,
|
1157 |
+
outputs=voice_dropdown
|
1158 |
+
)
|
1159 |
+
voice_mode_btn.click(
|
1160 |
+
fn=toggle_voice_mode,
|
1161 |
+
inputs=voice_mode_btn,
|
1162 |
+
outputs=[voice_mode_btn, voice_dropdown]
|
1163 |
)
|
1164 |
+
# === Voice Mode UI (End) ===
|
1165 |
|
1166 |
with gr.Accordion("Image Input", open=False, elem_classes="gr-accordion"):
|
1167 |
with gr.Row(elem_classes="image-container"):
|
|
|
1190 |
btn = gr.Button("Send", scale=1)
|
1191 |
|
1192 |
with gr.Row():
|
1193 |
+
clear = gr.Button("Clear Conversation", variant="stop")
|
1194 |
clear_memory = gr.Button("Clear Memory")
|
1195 |
|
1196 |
+
# Pass voice_mode_state and selected_voice to the streaming_response function
|
1197 |
btn.click(
|
1198 |
fn=streaming_response,
|
1199 |
+
inputs=[txt, chatbot, img, math_ocr_img, voice_mode_btn, voice_dropdown],
|
1200 |
+
outputs=[chatbot, gr.Audio(label="Audio Response", type="filepath", autoplay=True, visible=True), img, math_ocr_img, txt]
|
1201 |
)
|
1202 |
txt.submit(
|
1203 |
fn=streaming_response,
|
1204 |
+
inputs=[txt, chatbot, img, math_ocr_img, voice_mode_btn, voice_dropdown],
|
1205 |
+
outputs=[chatbot, gr.Audio(label="Audio Response", type="filepath", autoplay=True, visible=True), img, math_ocr_img, txt]
|
1206 |
)
|
1207 |
|
1208 |
clear.click(
|