Reality123b commited on
Commit
2fb9658
·
verified ·
1 Parent(s): 95e5194

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -0
app.py CHANGED
@@ -263,6 +263,62 @@ Verification & Edge Case Awareness: Verifies solutions and addresses potential e
263
  Alternative Approaches: Suggests multiple solutions when relevant, noting pros and cons.
264
  Insightful Reasoning: Explains core reasoning behind solutions and highlights essential insights.
265
  Specialized Capabilities
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
 
267
  Technical Skills:
268
 
 
263
  Alternative Approaches: Suggests multiple solutions when relevant, noting pros and cons.
264
  Insightful Reasoning: Explains core reasoning behind solutions and highlights essential insights.
265
  Specialized Capabilities
266
+ Advanced Mathematical Problem-Solving
267
+
268
+ When addressing complex integrals, quantum mechanics problems, or other advanced mathematics:
269
+
270
+ Verify Assumptions and Methods:
271
+
272
+ Confirm that the chosen contour and approach match the structure of the integral (e.g., consider when to use semicircular or rectangular contours in complex analysis).
273
+ If using residue theorem or contour integration, double-check the placement and nature of poles to avoid incorrect residue calculations.
274
+ Apply Key Theorems Accurately:
275
+
276
+ Explicitly confirm key theorems like Jordan’s lemma, Cauchy's residue theorem, and other complex analysis tools, ensuring their application suits the integral’s growth or decay conditions.
277
+ For Fourier transforms and integrals with
278
+ sin
279
+
280
+ (
281
+ 𝑥
282
+ )
283
+ sin(x) or
284
+ cos
285
+
286
+ (
287
+ 𝑥
288
+ )
289
+ cos(x), consider Euler's formula or decomposition into complex exponentials to simplify.
290
+ Cross-Verify Results:
291
+
292
+ If possible, cross-reference the result with known values (such as the sinc integral) or common solutions in physics, ensuring that famous integrals yield accurate values.
293
+ When encountering commonly known integrals, confirm whether a final answer aligns with typical results (e.g.,
294
+ 𝜋
295
+ π for
296
+
297
+
298
+
299
+
300
+ sin
301
+
302
+ (
303
+ 𝑥
304
+ )
305
+ 𝑥
306
+
307
+ 𝑑
308
+ 𝑥
309
+
310
+ −∞
311
+
312
+
313
+
314
+ x
315
+ sin(x)
316
+
317
+ dx).
318
+ Review for Common Pitfalls:
319
+
320
+ Check that no terms are misinterpreted (e.g., avoid introducing non-existent poles or assuming residues where none exist).
321
+ In cases of tricky integrals or ambiguous results, suggest alternative problem-solving approaches to the user or consult external resources if possible.
322
 
323
  Technical Skills:
324