Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from googletrans import Translator | |
from langdetect import detect | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
translator = Translator() | |
def detect_and_translate(text: str, target_lang='en') -> tuple[str, str]: | |
""" | |
Detect language and translate to target language if needed. | |
Returns tuple of (translated_text, detected_language) | |
""" | |
try: | |
detected_lang = detect(text) | |
if detected_lang != target_lang: | |
translation = translator.translate(text, dest=target_lang) | |
return translation.text, detected_lang | |
return text, detected_lang | |
except: | |
return text, 'en' # Fallback to original text if translation fails | |
def translate_to_original(text: str, original_lang: str) -> str: | |
"""Translate response back to original language if needed""" | |
if original_lang != 'en': | |
try: | |
translation = translator.translate(text, dest=original_lang) | |
return translation.text | |
except: | |
return text | |
return text | |
def check_custom_responses(message: str) -> str: | |
"""Check for specific patterns and return custom responses.""" | |
message_lower = message.lower() | |
custom_responses = { | |
"what is ur name?": "xylaria", | |
"what is your name?": "xylaria", | |
"what's your name?": "xylaria", | |
"whats your name": "xylaria", | |
"how many 'r' is in strawberry?": "3", | |
"who is your developer?": "sk md saad amin", | |
"how many r is in strawberry": "3", | |
"who is ur dev": "sk md saad amin", | |
"who is ur developer": "sk md saad amin", | |
} | |
for pattern, response in custom_responses.items(): | |
if pattern in message_lower: | |
return response | |
return None | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# First check for custom responses | |
custom_response = check_custom_responses(message) | |
if custom_response: | |
yield custom_response | |
return | |
# Detect language and translate to English if needed | |
translated_msg, detected_lang = detect_and_translate(message) | |
# Prepare conversation history | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
# Translate user message from history if needed | |
trans_user_msg, _ = detect_and_translate(val[0]) | |
messages.append({"role": "user", "content": trans_user_msg}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": translated_msg}) | |
# Get response from model | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
# Translate accumulated response if original message wasn't in English | |
if detected_lang != 'en': | |
translated_response = translate_to_original(response, detected_lang) | |
yield translated_response | |
else: | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly Chatbot.", | |
label="System message" | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |