API / app.py
Reality123b's picture
Update app.py
c08c295 verified
raw
history blame
12.6 kB
import gradio as gr
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from indic_transliteration import sanscript
from indic_transliteration.detect import detect as detect_script
from indic_transliteration.sanscript import transliterate
import langdetect
import re
# Initialize clients
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
image_client = InferenceClient("SG161222/RealVisXL_V3.0")
def detect_language_script(text: str) -> tuple[str, str]:
"""Detect language and script of the input text.
Returns (language_code, script_type)"""
try:
# Use confidence threshold to avoid false detections
lang_detect = langdetect.detect_langs(text)
if lang_detect[0].prob > 0.8:
# Only accept high confidence detections
lang = lang_detect[0].lang
else:
lang = 'en' # Default to English if unsure
script = None
try:
script = detect_script(text)
except:
pass
return lang, script
except:
return 'en', None
def is_romanized_indic(text: str) -> bool:
"""Check if text appears to be romanized Indic language.
More strict pattern matching."""
# Common Bengali romanized patterns with word boundaries
bengali_patterns = [
r'\b(ami|tumi|apni)\b', # Common pronouns
r'\b(ache|achen|thako|thaken)\b', # Common verbs
r'\b(kemon|bhalo|kharap)\b', # Common adjectives
r'\b(ki|kothay|keno)\b' # Common question words
]
# Require multiple matches to confirm it's actually Bengali
text_lower = text.lower()
matches = sum(1 for pattern in bengali_patterns if re.search(pattern, text_lower))
return matches >= 2 # Require at least 2 matches to consider it Bengali
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
"""Translate text to target language, with more conservative translation logic."""
# Skip translation for very short inputs or basic greetings
if len(text.split()) <= 2 or text.lower() in ['hello', 'hi', 'hey']:
return text, 'en', False
original_lang, script = detect_language_script(text)
is_transliterated = False
# Only process if confident it's non-English
if original_lang != 'en' and len(text.split()) > 2:
try:
translator = GoogleTranslator(source='auto', target=target_lang)
translated = translator.translate(text)
return translated, original_lang, is_transliterated
except Exception as e:
print(f"Translation error: {e}")
return text, 'en', False
# Check for romanized Indic text only if it's a longer input
if original_lang == 'en' and len(text.split()) > 2 and is_romanized_indic(text):
text = romanized_to_bengali(text)
return translate_text(text, target_lang) # Recursive call with Bengali script
return text, 'en', False
def check_custom_responses(message: str) -> str:
"""Check for specific patterns and return custom responses."""
message_lower = message.lower()
custom_responses = {
"what is ur name?": "xylaria",
"what is your name?": "xylaria",
"what's your name?": "xylaria",
"whats your name": "xylaria",
"how many 'r' is in strawberry?": "3",
"who is your developer?": "sk md saad amin",
"how many r is in strawberry": "3",
"who is ur dev": "sk md saad amin",
"who is ur developer": "sk md saad amin",
}
for pattern, response in custom_responses.items():
if pattern in message_lower:
return response
return None
def is_image_request(message: str) -> bool:
"""Detect if the message is requesting image generation."""
image_triggers = [
"generate an image",
"create an image",
"draw",
"make a picture",
"generate a picture",
"create a picture",
"generate art",
"create art",
"make art",
"visualize",
"show me",
]
message_lower = message.lower()
return any(trigger in message_lower for trigger in image_triggers)
def generate_image(prompt: str) -> str:
"""Generate an image using DALLE-4K model."""
try:
response = image_client.text_to_image(
prompt,
parameters={
"negative_prompt": "blurry, bad quality, nsfw",
"num_inference_steps": 30,
"guidance_scale": 7.5
}
)
# Save the image and return the path or base64 string
# Note: Implementation depends on how you want to handle the image output
return response
except Exception as e:
print(f"Image generation error: {e}")
return None
def romanized_to_bengali(text: str) -> str:
"""Convert romanized Bengali text to Bengali script."""
bengali_mappings = {
'ami': 'আমি',
'tumi': 'তুমি',
'apni': 'আপনি',
'kemon': 'কেমন',
'achen': 'আছেন',
'acchen': 'আছেন',
'bhalo': 'ভালো',
'achi': 'আছি',
'ki': 'কি',
'kothay': 'কোথায়',
'keno': 'কেন',
}
text_lower = text.lower()
for roman, bengali in bengali_mappings.items():
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
if text_lower == text.lower():
try:
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
except:
return text
return text_lower
import gradio as gr
import time
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from indic_transliteration import sanscript
from indic_transliteration.detect import detect as detect_script
from indic_transliteration.sanscript import transliterate
import langdetect
import re
# Initialize clients
text_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
image_client = InferenceClient("SG161222/RealVisXL_V3.0")
def create_chat_interface():
# Custom CSS for better styling
custom_css = """
.container {
max-width: 850px !important;
margin: auto;
}
.chat-window {
height: 600px !important;
overflow-y: auto;
border-radius: 15px !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
}
.chat-message {
padding: 1rem !important;
margin: 0.5rem !important;
border-radius: 10px !important;
}
.user-message {
background-color: #e3f2fd !important;
}
.bot-message {
background-color: #f5f5f5 !important;
}
.settings-block {
padding: 1rem !important;
background-color: #ffffff !important;
border-radius: 10px !important;
margin-top: 1rem !important;
}
"""
# Create the interface with custom theme
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
# Header
with gr.Row():
gr.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<h1 style="font-size: 2.5rem; font-weight: 600; color: #1a237e">Xylaria Chat</h1>
<p style="color: #666">Your AI Assistant for Multiple Languages</p>
</div>
""")
# Main chat interface
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
elem_classes=["chat-window"],
type='messages' # Fixed: Added type parameter
)
# Input area with buttons
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False
)
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear")
# Settings panel (collapsible)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column():
system_msg = gr.Textbox(
value="You are a friendly Chatbot who always responds in English unless the user specifically uses another language.",
label="System Message",
lines=2
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max Tokens"
)
with gr.Column():
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
# Function to handle sending messages
def user_message(message, history):
if message:
return "", history + [{"role": "user", "content": message}]
return "", history
def bot_response(history, system_msg, max_tokens, temperature, top_p):
if not history:
return history
# Get the last user message
message = history[-1]["content"]
# Check for custom responses first
custom_response = check_custom_responses(message)
if custom_response:
history.append({"role": "assistant", "content": custom_response})
return history
# Check for image generation request
if is_image_request(message):
try:
image = generate_image(message)
if image:
history.append({"role": "assistant", "content": "Here's your generated image!"})
return history
except Exception as e:
history.append({"role": "assistant", "content": f"Sorry, I couldn't generate the image: {str(e)}"})
return history
# Handle regular text responses
try:
translated_msg, original_lang, was_transliterated = translate_text(message)
messages = [{"role": "system", "content": system_msg}]
messages.extend(history[:-1])
messages.append({"role": "user", "content": translated_msg})
response = ""
for token in text_client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
):
response += token.choices[0].delta.content or ""
history.append({"role": "assistant", "content": response})
yield history
time.sleep(0.02)
except Exception as e:
history.append({"role": "assistant", "content": f"An error occurred: {str(e)}"})
yield history
# Event handlers
txt_msg = txt.submit(
user_message,
[txt, chatbot],
[txt, chatbot],
queue=False
).then(
bot_response,
[chatbot, system_msg, max_tokens, temperature, top_p],
chatbot
)
send_btn.click(
user_message,
[txt, chatbot],
[txt, chatbot],
queue=False
).then(
bot_response,
[chatbot, system_msg, max_tokens, temperature, top_p],
chatbot
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
return demo
# Create and launch the interface
demo = create_chat_interface()
if __name__ == "__main__":
demo.launch(share=True)