Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| class XylariaChat: | |
| def __init__(self): | |
| # Securely load HuggingFace token | |
| self.hf_token = os.getenv("HF_TOKEN") | |
| if not self.hf_token: | |
| raise ValueError("HuggingFace token not found in environment variables") | |
| # Initialize the inference client | |
| self.client = InferenceClient( | |
| model="Qwen/QwQ-32B-Preview", | |
| api_key=self.hf_token | |
| ) | |
| # Initialize conversation history and persistent memory | |
| self.conversation_history = [] | |
| self.persistent_memory = {} | |
| # System prompt with more detailed instructions | |
| self.system_prompt = """You are Xylaria 1.4 Senoa, Made by Sk Md Saad Amin designed to provide helpful, accurate, and engaging support across a wide range of topics. Key guidelines for our interaction include: | |
| Core Principles: | |
| - Provide accurate and comprehensive assistance | |
| - Maintain a friendly and approachable communication style | |
| - Prioritize the user's needs and context | |
| Communication Style: | |
| - Be conversational and warm | |
| - Use clear, concise language | |
| - Occasionally use light, appropriate emoji to enhance communication | |
| - Adapt communication style to the user's preferences | |
| - Respond in english | |
| Important Notes: | |
| - I am an AI assistant created by an independent developer | |
| - I do not represent OpenAI or any other AI institution | |
| - For image-related queries, I can describe images or provide analysis, or generate or link to images directly | |
| Capabilities: | |
| - Assist with research, writing, analysis, problem-solving, and creative tasks | |
| - Answer questions across various domains | |
| - Provide explanations and insights | |
| - Offer supportive and constructive guidance """ | |
| def store_information(self, key, value): | |
| """Store important information in persistent memory""" | |
| self.persistent_memory[key] = value | |
| def retrieve_information(self, key): | |
| """Retrieve information from persistent memory""" | |
| return self.persistent_memory.get(key) | |
| def reset_conversation(self): | |
| """ | |
| Completely reset the conversation history and persistent memory | |
| This helps prevent exposing previous users' conversations | |
| """ | |
| self.conversation_history = [] | |
| self.persistent_memory = {} | |
| def get_response(self, user_input): | |
| # Prepare messages with conversation context and persistent memory | |
| messages = [ | |
| {"role": "system", "content": self.system_prompt}, | |
| *self.conversation_history, | |
| {"role": "user", "content": user_input} | |
| ] | |
| # Add persistent memory context if available | |
| if self.persistent_memory: | |
| memory_context = "Remembered Information:\n" + "\n".join( | |
| [f"{k}: {v}" for k, v in self.persistent_memory.items()] | |
| ) | |
| messages.insert(1, {"role": "system", "content": memory_context}) | |
| # Generate response with streaming | |
| try: | |
| stream = self.client.chat.completions.create( | |
| messages=messages, | |
| temperature=0.5, | |
| max_tokens=10240, | |
| top_p=0.7, | |
| stream=True | |
| ) | |
| return stream | |
| except Exception as e: | |
| return f"Error generating response: {str(e)}" | |
| def create_interface(self): | |
| def streaming_response(message, chat_history): | |
| # Clear input textbox | |
| response_stream = self.get_response(message) | |
| # If it's an error, return immediately | |
| if isinstance(response_stream, str): | |
| return "", chat_history + [[message, response_stream]] | |
| # Prepare for streaming response | |
| full_response = "" | |
| updated_history = chat_history + [[message, ""]] | |
| # Streaming output | |
| for chunk in response_stream: | |
| if chunk.choices[0].delta.content: | |
| chunk_content = chunk.choices[0].delta.content | |
| full_response += chunk_content | |
| # Update the last message in chat history with partial response | |
| updated_history[-1][1] = full_response | |
| yield "", updated_history | |
| # Update conversation history | |
| self.conversation_history.append( | |
| {"role": "user", "content": message} | |
| ) | |
| self.conversation_history.append( | |
| {"role": "assistant", "content": full_response} | |
| ) | |
| # Limit conversation history to prevent token overflow | |
| if len(self.conversation_history) > 10: | |
| self.conversation_history = self.conversation_history[-10:] | |
| # Custom CSS for Inter font | |
| custom_css = """ | |
| @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); | |
| body, .gradio-container { | |
| font-family: 'Inter', sans-serif !important; | |
| } | |
| .chatbot-container .message { | |
| font-family: 'Inter', sans-serif !important; | |
| } | |
| .gradio-container input, | |
| .gradio-container textarea, | |
| .gradio-container button { | |
| font-family: 'Inter', sans-serif !important; | |
| } | |
| """ | |
| with gr.Blocks(theme='soft', css=custom_css) as demo: | |
| # Chat interface with improved styling | |
| with gr.Column(): | |
| chatbot = gr.Chatbot( | |
| label="Xylaria 1.4 Senoa", | |
| height=500, | |
| show_copy_button=True | |
| ) | |
| # Input row with improved layout | |
| with gr.Row(): | |
| txt = gr.Textbox( | |
| show_label=False, | |
| placeholder="Type your message...", | |
| container=False, | |
| scale=4 | |
| ) | |
| btn = gr.Button("Send", scale=1) | |
| # Clear history and memory buttons | |
| clear = gr.Button("Clear Conversation") | |
| clear_memory = gr.Button("Clear Memory") | |
| # Submit functionality with streaming | |
| btn.click( | |
| fn=streaming_response, | |
| inputs=[txt, chatbot], | |
| outputs=[txt, chatbot] | |
| ) | |
| txt.submit( | |
| fn=streaming_response, | |
| inputs=[txt, chatbot], | |
| outputs=[txt, chatbot] | |
| ) | |
| # Clear conversation history | |
| clear.click( | |
| fn=lambda: None, | |
| inputs=None, | |
| outputs=[chatbot], | |
| queue=False | |
| ) | |
| # Clear persistent memory and reset conversation | |
| clear_memory.click( | |
| fn=self.reset_conversation, | |
| inputs=None, | |
| outputs=[chatbot], | |
| queue=False | |
| ) | |
| return demo | |
| # Launch the interface | |
| def main(): | |
| chat = XylariaChat() | |
| interface = chat.create_interface() | |
| interface.launch( | |
| share=True, # Optional: create a public link | |
| debug=True # Show detailed errors | |
| ) | |
| if __name__ == "__main__": | |
| main() |