File size: 10,199 Bytes
ef37daa
65a6bd0
ae5eb30
e1ff28f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a9af6
e1ff28f
 
 
 
 
 
 
 
 
 
 
 
04a9af6
e1ff28f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b816f
e1ff28f
 
 
 
 
 
 
 
 
 
 
04a9af6
e1ff28f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import gradio as gr
from huggingface_hub import InferenceClient
import os
from typing import Optional, List, Tuple, Generator
import time
from functools import partial
import logging
import asyncio
from tenacity import retry, stop_after_attempt, wait_exponential

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ChatInterface:
    def __init__(self, text_model: str, image_model: str, hf_token: str):
        """Initialize the chat interface with specified models and token."""
        self.text_client = InferenceClient(text_model, token=hf_token)
        self.image_client = InferenceClient(image_model, token=hf_token)
        self.custom_responses = self._initialize_custom_responses()
        self.system_prompt = self._initialize_system_prompt()
        
    @staticmethod
    def _initialize_system_prompt() -> str:
        """Initialize the system prompt for the AI assistant."""
        return """# Xylaria AI Assistant (v1.3.0)

## Core Identity
- Name: Xylaria
- Version: 1.3.0
- Base Model: Mistral-Nemo-Instruct
- Knowledge Cutoff: April 2024

## Primary Directives
1. Provide accurate, well-researched information
2. Maintain ethical standards in all interactions
3. Adapt communication style to user needs
4. Acknowledge limitations and uncertainties
5. Prioritize user safety and wellbeing

## Technical Capabilities
- Programming & Software Development
- Mathematical Analysis & Computation
- Scientific Research & Explanation
- Data Analysis & Visualization
- Technical Writing & Documentation
- Problem-Solving & Debugging
- Educational Content Creation

## Communication Guidelines
- Use clear, precise language
- Adapt technical depth to user expertise
- Provide step-by-step explanations when needed
- Ask for clarification when necessary
- Maintain professional yet approachable tone

## Domain Expertise
1. Computer Science & Technology
   - Multiple programming languages
   - Software architecture & design
   - Data structures & algorithms
   - Best practices & patterns

2. Mathematics & Statistics
   - Advanced mathematical concepts
   - Statistical analysis
   - Probability theory
   - Data interpretation

3. Sciences
   - Physics & Chemistry
   - Biology & Life Sciences
   - Environmental Science
   - Engineering Principles

4. Humanities & Arts
   - Technical Writing
   - Documentation
   - Creative Problem-Solving
   - Research Methodology

## Response Framework
1. Analyze user query thoroughly
2. Consider context and background
3. Structure response logically
4. Provide examples when helpful
5. Verify accuracy of information
6. Include relevant caveats or limitations

## Ethical Guidelines
- Prioritize user safety
- Maintain data privacy
- Avoid harmful content
- Acknowledge uncertainties
- Provide balanced perspectives
- Respect intellectual property

## Limitations
- No real-time data access
- No persistent memory between sessions
- Cannot verify external sources
- No capability to execute code
- Limited to text and basic image generation

## Version-Specific Features
- Enhanced error handling
- Improved response consistency
- Better context awareness
- Advanced technical explanation capabilities
- Robust ethical framework"""

    @staticmethod
    def _initialize_custom_responses() -> dict:
        """Initialize custom response patterns in a more maintainable way."""
        base_patterns = {
            "name": ["xylaria"],
            "developer": ["sk md saad amin"],
            "strawberry_r": ["3"]
        }
        
        patterns = {}
        name_variations = [
            "what is ur name", "what's ur name", "whats ur name", 
            "what is your name", "wat is ur name", "wut is ur name"
        ]
        dev_variations = [
            "who is your developer", "who is ur developer", "who is ur dev",
            "who's your developer", "who's ur dev"
        ]
        strawberry_variations = [
            "how many 'r' is in strawberry", "how many r is in strawberry",
            "how many r's are in strawberry"
        ]
        
        for pattern in name_variations:
            patterns[pattern] = "xylaria"
            patterns[pattern.capitalize()] = "xylaria"
        
        for pattern in dev_variations:
            patterns[pattern] = "sk md saad amin"
            patterns[pattern.capitalize()] = "sk md saad amin"
            
        for pattern in strawberry_variations:
            patterns[pattern] = "3"
            patterns[pattern.capitalize()] = "3"
            
        return patterns

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=10)
    )
    async def _generate_text_response(
        self,
        messages: List[dict],
        max_tokens: int,
        temperature: float,
        top_p: float
    ) -> Generator[str, None, None]:
        """Generate text response with retry logic."""
        try:
            response = ""
            async for message in self.text_client.chat_completion(
                messages,
                max_tokens=max_tokens,
                stream=True,
                temperature=temperature,
                top_p=top_p,
                timeout=30
            ):
                token = message.choices[0].delta.content
                response += token
                yield response
        except Exception as e:
            logger.error(f"Error generating text response: {e}")
            yield "I apologize, but I'm having trouble generating a response right now. Please try again in a moment."

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=4, max=10)
    )
    async def _generate_image(self, prompt: str) -> Optional[bytes]:
        """Generate image with retry logic."""
        try:
            return await self.image_client.text_to_image(
                prompt,
                parameters={
                    "negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
                    "num_inference_steps": 30,
                    "guidance_scale": 7.5,
                    "sampling_steps": 15,
                    "upscaler": "4x-UltraSharp",
                    "denoising_strength": 0.5,
                },
                timeout=60
            )
        except Exception as e:
            logger.error(f"Error generating image: {e}")
            return None

    def is_image_request(self, message: str) -> bool:
        """Detect if the message is requesting image generation."""
        image_triggers = {
            "generate an image", "create an image", "draw",
            "make a picture", "generate a picture", "create a picture",
            "generate art", "create art", "make art", "visualize",
            "show me"
        }
        return any(trigger in message.lower() for trigger in image_triggers)

    async def respond(
        self,
        message: str,
        history: List[Tuple[str, str]],
        max_tokens: int,
        temperature: float,
        top_p: float,
    ) -> Generator[str, None, None]:
        """Main response handler with improved error handling."""
        try:
            # Check for custom responses first
            message_lower = message.lower()
            for pattern, response in self.custom_responses.items():
                if pattern in message_lower:
                    yield response
                    return

            # Handle image generation requests
            if self.is_image_request(message):
                image = await self._generate_image(message)
                if image:
                    yield f"Here's your generated image based on: {message}"
                else:
                    yield "I apologize, but I couldn't generate the image. Please try again."
                return

            # Prepare conversation history with system prompt
            messages = [{"role": "system", "content": self.system_prompt}]
            for user_msg, assistant_msg in history:
                if user_msg:
                    messages.append({"role": "user", "content": user_msg})
                if assistant_msg:
                    messages.append({"role": "assistant", "content": assistant_msg})
            messages.append({"role": "user", "content": message})

            # Generate text response
            async for response in self._generate_text_response(
                messages, max_tokens, temperature, top_p
            ):
                yield response

        except Exception as e:
            logger.error(f"Error in respond function: {e}")
            yield "I encountered an error. Please try again or contact support if the issue persists."

def create_interface(hf_token: str):
    """Create and configure the Gradio interface."""
    chat = ChatInterface(
        text_model="mistralai/Mistral-Nemo-Instruct-2407",
        image_model="SG161222/RealVisXL_V3.0",
        hf_token=hf_token
    )
    
    return gr.ChatInterface(
        partial(chat.respond),
        additional_inputs=[
            gr.Slider(
                minimum=1,
                maximum=16343,
                value=16343,
                step=1,
                label="Max new tokens"
            ),
            gr.Slider(
                minimum=0.1,
                maximum=4.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            ),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p (nucleus sampling)"
            ),
        ],
        css="""
        @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
        body, .gradio-container {
            font-family: 'Inter', sans-serif;
        }
        """
    )

if __name__ == "__main__":
    # Get token from environment variable
    hf_token = os.getenv("hf_token")
    if not hf_token:
        raise ValueError("Please set the hf_token environment variable")
    
    # Create and launch the interface
    demo = create_interface(hf_token)
    demo.launch()