import streamlit as st from transformers import pipeline from transformers import AutoModelForCausalLM, AutoTokenizer x = st.slider('Select a value') st.write(x, 'squared is', x * x) text = st.text_input('Please input') btn = st.button('Send') result = st.empty() llm = pipeline('text-generation', model='gpt2') if btn: # res = llm(text) # result.success(res[0]["generated_text"].strip()) model_id = "mistral-community/Mixtral-8x22B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=60) result.success(tokenizer.decode(outputs[0], skip_special_tokens=True))