Spaces:
Runtime error
Runtime error
| from importlib import import_module | |
| import numpy as np | |
| from typing import Any, Dict, Optional, Tuple, Callable | |
| from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_xformers_available | |
| from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from diffusers.models.embeddings import SinusoidalPositionalEmbedding, TimestepEmbedding, Timesteps | |
| from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero | |
| from diffusers.models.attention_processor import SpatialNorm, LORA_ATTENTION_PROCESSORS, \ | |
| CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0, \ | |
| AttnAddedKVProcessor, AttnAddedKVProcessor2_0, SlicedAttnAddedKVProcessor, XFormersAttnAddedKVProcessor, \ | |
| LoRAAttnAddedKVProcessor, LoRAXFormersAttnProcessor, XFormersAttnProcessor, LoRAAttnProcessor2_0, LoRAAttnProcessor, \ | |
| AttnProcessor, SlicedAttnProcessor, logger | |
| from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
| from dataclasses import dataclass | |
| from opensora.models.diffusion.utils.pos_embed import get_2d_sincos_pos_embed, RoPE1D, RoPE2D, LinearScalingRoPE2D, LinearScalingRoPE1D | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| class CombinedTimestepSizeEmbeddings(nn.Module): | |
| """ | |
| For PixArt-Alpha. | |
| Reference: | |
| https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 | |
| """ | |
| def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): | |
| super().__init__() | |
| self.outdim = size_emb_dim | |
| self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
| self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
| self.use_additional_conditions = use_additional_conditions | |
| if use_additional_conditions: | |
| self.use_additional_conditions = True | |
| self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
| self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) | |
| self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) | |
| def apply_condition(self, size: torch.Tensor, batch_size: int, embedder: nn.Module): | |
| if size.ndim == 1: | |
| size = size[:, None] | |
| if size.shape[0] != batch_size: | |
| size = size.repeat(batch_size // size.shape[0], 1) | |
| if size.shape[0] != batch_size: | |
| raise ValueError(f"`batch_size` should be {size.shape[0]} but found {batch_size}.") | |
| current_batch_size, dims = size.shape[0], size.shape[1] | |
| size = size.reshape(-1) | |
| size_freq = self.additional_condition_proj(size).to(size.dtype) | |
| size_emb = embedder(size_freq) | |
| size_emb = size_emb.reshape(current_batch_size, dims * self.outdim) | |
| return size_emb | |
| def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): | |
| timesteps_proj = self.time_proj(timestep) | |
| timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) | |
| if self.use_additional_conditions: | |
| resolution = self.apply_condition(resolution, batch_size=batch_size, embedder=self.resolution_embedder) | |
| aspect_ratio = self.apply_condition( | |
| aspect_ratio, batch_size=batch_size, embedder=self.aspect_ratio_embedder | |
| ) | |
| conditioning = timesteps_emb + torch.cat([resolution, aspect_ratio], dim=1) | |
| else: | |
| conditioning = timesteps_emb | |
| return conditioning | |
| class CaptionProjection(nn.Module): | |
| """ | |
| Projects caption embeddings. Also handles dropout for classifier-free guidance. | |
| Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
| """ | |
| def __init__(self, in_features, hidden_size, num_tokens=120): | |
| super().__init__() | |
| self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) | |
| self.act_1 = nn.GELU(approximate="tanh") | |
| self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True) | |
| self.register_buffer("y_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features**0.5)) | |
| def forward(self, caption, force_drop_ids=None): | |
| hidden_states = self.linear_1(caption) | |
| hidden_states = self.act_1(hidden_states) | |
| hidden_states = self.linear_2(hidden_states) | |
| return hidden_states | |
| class PatchEmbed(nn.Module): | |
| """2D Image to Patch Embedding""" | |
| def __init__( | |
| self, | |
| height=224, | |
| width=224, | |
| patch_size=16, | |
| in_channels=3, | |
| embed_dim=768, | |
| layer_norm=False, | |
| flatten=True, | |
| bias=True, | |
| interpolation_scale=1, | |
| ): | |
| super().__init__() | |
| num_patches = (height // patch_size) * (width // patch_size) | |
| self.flatten = flatten | |
| self.layer_norm = layer_norm | |
| self.proj = nn.Conv2d( | |
| in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
| ) | |
| if layer_norm: | |
| self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) | |
| else: | |
| self.norm = None | |
| self.patch_size = patch_size | |
| # See: | |
| # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L161 | |
| self.height, self.width = height // patch_size, width // patch_size | |
| self.base_size = height // patch_size | |
| self.interpolation_scale = interpolation_scale | |
| pos_embed = get_2d_sincos_pos_embed( | |
| embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale | |
| ) | |
| self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False) | |
| def forward(self, latent): | |
| height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size | |
| latent = self.proj(latent) | |
| if self.flatten: | |
| latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC | |
| if self.layer_norm: | |
| latent = self.norm(latent) | |
| # Interpolate positional embeddings if needed. | |
| # (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160) | |
| if self.height != height or self.width != width: | |
| # raise ValueError | |
| pos_embed = get_2d_sincos_pos_embed( | |
| embed_dim=self.pos_embed.shape[-1], | |
| grid_size=(height, width), | |
| base_size=self.base_size, | |
| interpolation_scale=self.interpolation_scale, | |
| ) | |
| pos_embed = torch.from_numpy(pos_embed) | |
| pos_embed = pos_embed.float().unsqueeze(0).to(latent.device) | |
| else: | |
| pos_embed = self.pos_embed | |
| return (latent + pos_embed).to(latent.dtype) | |
| class Attention(nn.Module): | |
| r""" | |
| A cross attention layer. | |
| Parameters: | |
| query_dim (`int`): | |
| The number of channels in the query. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
| heads (`int`, *optional*, defaults to 8): | |
| The number of heads to use for multi-head attention. | |
| dim_head (`int`, *optional*, defaults to 64): | |
| The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout probability to use. | |
| bias (`bool`, *optional*, defaults to False): | |
| Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
| upcast_attention (`bool`, *optional*, defaults to False): | |
| Set to `True` to upcast the attention computation to `float32`. | |
| upcast_softmax (`bool`, *optional*, defaults to False): | |
| Set to `True` to upcast the softmax computation to `float32`. | |
| cross_attention_norm (`str`, *optional*, defaults to `None`): | |
| The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | |
| cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use for the group norm in the cross attention. | |
| added_kv_proj_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels to use for the added key and value projections. If `None`, no projection is used. | |
| norm_num_groups (`int`, *optional*, defaults to `None`): | |
| The number of groups to use for the group norm in the attention. | |
| spatial_norm_dim (`int`, *optional*, defaults to `None`): | |
| The number of channels to use for the spatial normalization. | |
| out_bias (`bool`, *optional*, defaults to `True`): | |
| Set to `True` to use a bias in the output linear layer. | |
| scale_qk (`bool`, *optional*, defaults to `True`): | |
| Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. | |
| only_cross_attention (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if | |
| `added_kv_proj_dim` is not `None`. | |
| eps (`float`, *optional*, defaults to 1e-5): | |
| An additional value added to the denominator in group normalization that is used for numerical stability. | |
| rescale_output_factor (`float`, *optional*, defaults to 1.0): | |
| A factor to rescale the output by dividing it with this value. | |
| residual_connection (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to add the residual connection to the output. | |
| _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): | |
| Set to `True` if the attention block is loaded from a deprecated state dict. | |
| processor (`AttnProcessor`, *optional*, defaults to `None`): | |
| The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and | |
| `AttnProcessor` otherwise. | |
| """ | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias: bool = False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| cross_attention_norm: Optional[str] = None, | |
| cross_attention_norm_num_groups: int = 32, | |
| added_kv_proj_dim: Optional[int] = None, | |
| norm_num_groups: Optional[int] = None, | |
| spatial_norm_dim: Optional[int] = None, | |
| out_bias: bool = True, | |
| scale_qk: bool = True, | |
| only_cross_attention: bool = False, | |
| eps: float = 1e-5, | |
| rescale_output_factor: float = 1.0, | |
| residual_connection: bool = False, | |
| _from_deprecated_attn_block: bool = False, | |
| processor: Optional["AttnProcessor"] = None, | |
| attention_mode: str = 'xformers', | |
| use_rope: bool = False, | |
| rope_scaling: Optional[Dict] = None, | |
| compress_kv_factor: Optional[Tuple] = None, | |
| ): | |
| super().__init__() | |
| self.inner_dim = dim_head * heads | |
| self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.upcast_attention = upcast_attention | |
| self.upcast_softmax = upcast_softmax | |
| self.rescale_output_factor = rescale_output_factor | |
| self.residual_connection = residual_connection | |
| self.dropout = dropout | |
| self.use_rope = use_rope | |
| self.rope_scaling = rope_scaling | |
| self.compress_kv_factor = compress_kv_factor | |
| # we make use of this private variable to know whether this class is loaded | |
| # with an deprecated state dict so that we can convert it on the fly | |
| self._from_deprecated_attn_block = _from_deprecated_attn_block | |
| self.scale_qk = scale_qk | |
| self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
| self.heads = heads | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self.sliceable_head_dim = heads | |
| self.added_kv_proj_dim = added_kv_proj_dim | |
| self.only_cross_attention = only_cross_attention | |
| if self.added_kv_proj_dim is None and self.only_cross_attention: | |
| raise ValueError( | |
| "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
| ) | |
| if norm_num_groups is not None: | |
| self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) | |
| else: | |
| self.group_norm = None | |
| if spatial_norm_dim is not None: | |
| self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) | |
| else: | |
| self.spatial_norm = None | |
| if cross_attention_norm is None: | |
| self.norm_cross = None | |
| elif cross_attention_norm == "layer_norm": | |
| self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | |
| elif cross_attention_norm == "group_norm": | |
| if self.added_kv_proj_dim is not None: | |
| # The given `encoder_hidden_states` are initially of shape | |
| # (batch_size, seq_len, added_kv_proj_dim) before being projected | |
| # to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
| # before the projection, so we need to use `added_kv_proj_dim` as | |
| # the number of channels for the group norm. | |
| norm_cross_num_channels = added_kv_proj_dim | |
| else: | |
| norm_cross_num_channels = self.cross_attention_dim | |
| self.norm_cross = nn.GroupNorm( | |
| num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True | |
| ) | |
| else: | |
| raise ValueError( | |
| f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
| ) | |
| if USE_PEFT_BACKEND: | |
| linear_cls = nn.Linear | |
| else: | |
| linear_cls = LoRACompatibleLinear | |
| assert not (self.use_rope and (self.compress_kv_factor is not None)), "Can not both enable compressing kv and using rope" | |
| if self.compress_kv_factor is not None: | |
| self._init_compress() | |
| self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) | |
| if not self.only_cross_attention: | |
| # only relevant for the `AddedKVProcessor` classes | |
| self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
| self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
| else: | |
| self.to_k = None | |
| self.to_v = None | |
| if self.added_kv_proj_dim is not None: | |
| self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
| self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias)) | |
| self.to_out.append(nn.Dropout(dropout)) | |
| # set attention processor | |
| # We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
| # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
| # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
| if processor is None: | |
| processor = ( | |
| AttnProcessor2_0(self.inner_dim, attention_mode, use_rope, rope_scaling=rope_scaling, compress_kv_factor=compress_kv_factor) if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def set_use_memory_efficient_attention_xformers( | |
| self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None | |
| ) -> None: | |
| r""" | |
| Set whether to use memory efficient attention from `xformers` or not. | |
| Args: | |
| use_memory_efficient_attention_xformers (`bool`): | |
| Whether to use memory efficient attention from `xformers` or not. | |
| attention_op (`Callable`, *optional*): | |
| The attention operation to use. Defaults to `None` which uses the default attention operation from | |
| `xformers`. | |
| """ | |
| is_lora = hasattr(self, "processor") and isinstance( | |
| self.processor, | |
| LORA_ATTENTION_PROCESSORS, | |
| ) | |
| is_custom_diffusion = hasattr(self, "processor") and isinstance( | |
| self.processor, | |
| (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), | |
| ) | |
| is_added_kv_processor = hasattr(self, "processor") and isinstance( | |
| self.processor, | |
| ( | |
| AttnAddedKVProcessor, | |
| AttnAddedKVProcessor2_0, | |
| SlicedAttnAddedKVProcessor, | |
| XFormersAttnAddedKVProcessor, | |
| LoRAAttnAddedKVProcessor, | |
| ), | |
| ) | |
| if use_memory_efficient_attention_xformers: | |
| if is_added_kv_processor and (is_lora or is_custom_diffusion): | |
| raise NotImplementedError( | |
| f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}" | |
| ) | |
| if not is_xformers_available(): | |
| raise ModuleNotFoundError( | |
| ( | |
| "Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
| " xformers" | |
| ), | |
| name="xformers", | |
| ) | |
| elif not torch.cuda.is_available(): | |
| raise ValueError( | |
| "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" | |
| " only available for GPU " | |
| ) | |
| else: | |
| try: | |
| # Make sure we can run the memory efficient attention | |
| _ = xformers.ops.memory_efficient_attention( | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| ) | |
| except Exception as e: | |
| raise e | |
| if is_lora: | |
| # TODO (sayakpaul): should we throw a warning if someone wants to use the xformers | |
| # variant when using PT 2.0 now that we have LoRAAttnProcessor2_0? | |
| processor = LoRAXFormersAttnProcessor( | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| rank=self.processor.rank, | |
| attention_op=attention_op, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| processor.to(self.processor.to_q_lora.up.weight.device) | |
| elif is_custom_diffusion: | |
| processor = CustomDiffusionXFormersAttnProcessor( | |
| train_kv=self.processor.train_kv, | |
| train_q_out=self.processor.train_q_out, | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| attention_op=attention_op, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| if hasattr(self.processor, "to_k_custom_diffusion"): | |
| processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
| elif is_added_kv_processor: | |
| # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP | |
| # which uses this type of cross attention ONLY because the attention mask of format | |
| # [0, ..., -10.000, ..., 0, ...,] is not supported | |
| # throw warning | |
| logger.info( | |
| "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." | |
| ) | |
| processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) | |
| else: | |
| processor = XFormersAttnProcessor(attention_op=attention_op) | |
| else: | |
| if is_lora: | |
| attn_processor_class = ( | |
| LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
| ) | |
| processor = attn_processor_class( | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| rank=self.processor.rank, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| processor.to(self.processor.to_q_lora.up.weight.device) | |
| elif is_custom_diffusion: | |
| attn_processor_class = ( | |
| CustomDiffusionAttnProcessor2_0 | |
| if hasattr(F, "scaled_dot_product_attention") | |
| else CustomDiffusionAttnProcessor | |
| ) | |
| processor = attn_processor_class( | |
| train_kv=self.processor.train_kv, | |
| train_q_out=self.processor.train_q_out, | |
| hidden_size=self.processor.hidden_size, | |
| cross_attention_dim=self.processor.cross_attention_dim, | |
| ) | |
| processor.load_state_dict(self.processor.state_dict()) | |
| if hasattr(self.processor, "to_k_custom_diffusion"): | |
| processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
| else: | |
| # set attention processor | |
| # We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
| # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
| # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
| processor = ( | |
| AttnProcessor2_0() | |
| if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
| else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def set_attention_slice(self, slice_size: int) -> None: | |
| r""" | |
| Set the slice size for attention computation. | |
| Args: | |
| slice_size (`int`): | |
| The slice size for attention computation. | |
| """ | |
| if slice_size is not None and slice_size > self.sliceable_head_dim: | |
| raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
| if slice_size is not None and self.added_kv_proj_dim is not None: | |
| processor = SlicedAttnAddedKVProcessor(slice_size) | |
| elif slice_size is not None: | |
| processor = SlicedAttnProcessor(slice_size) | |
| elif self.added_kv_proj_dim is not None: | |
| processor = AttnAddedKVProcessor() | |
| else: | |
| # set attention processor | |
| # We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
| # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
| # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
| processor = ( | |
| AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
| ) | |
| self.set_processor(processor) | |
| def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None: | |
| r""" | |
| Set the attention processor to use. | |
| Args: | |
| processor (`AttnProcessor`): | |
| The attention processor to use. | |
| _remove_lora (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to remove LoRA layers from the model. | |
| """ | |
| if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None: | |
| deprecate( | |
| "set_processor to offload LoRA", | |
| "0.26.0", | |
| "In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.", | |
| ) | |
| # TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete | |
| # We need to remove all LoRA layers | |
| # Don't forget to remove ALL `_remove_lora` from the codebase | |
| for module in self.modules(): | |
| if hasattr(module, "set_lora_layer"): | |
| module.set_lora_layer(None) | |
| # if current processor is in `self._modules` and if passed `processor` is not, we need to | |
| # pop `processor` from `self._modules` | |
| if ( | |
| hasattr(self, "processor") | |
| and isinstance(self.processor, torch.nn.Module) | |
| and not isinstance(processor, torch.nn.Module) | |
| ): | |
| logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") | |
| self._modules.pop("processor") | |
| self.processor = processor | |
| def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": | |
| r""" | |
| Get the attention processor in use. | |
| Args: | |
| return_deprecated_lora (`bool`, *optional*, defaults to `False`): | |
| Set to `True` to return the deprecated LoRA attention processor. | |
| Returns: | |
| "AttentionProcessor": The attention processor in use. | |
| """ | |
| if not return_deprecated_lora: | |
| return self.processor | |
| # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
| # serialization format for LoRA Attention Processors. It should be deleted once the integration | |
| # with PEFT is completed. | |
| is_lora_activated = { | |
| name: module.lora_layer is not None | |
| for name, module in self.named_modules() | |
| if hasattr(module, "lora_layer") | |
| } | |
| # 1. if no layer has a LoRA activated we can return the processor as usual | |
| if not any(is_lora_activated.values()): | |
| return self.processor | |
| # If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
| is_lora_activated.pop("add_k_proj", None) | |
| is_lora_activated.pop("add_v_proj", None) | |
| # 2. else it is not posssible that only some layers have LoRA activated | |
| if not all(is_lora_activated.values()): | |
| raise ValueError( | |
| f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
| ) | |
| # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
| non_lora_processor_cls_name = self.processor.__class__.__name__ | |
| lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) | |
| hidden_size = self.inner_dim | |
| # now create a LoRA attention processor from the LoRA layers | |
| if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: | |
| kwargs = { | |
| "cross_attention_dim": self.cross_attention_dim, | |
| "rank": self.to_q.lora_layer.rank, | |
| "network_alpha": self.to_q.lora_layer.network_alpha, | |
| "q_rank": self.to_q.lora_layer.rank, | |
| "q_hidden_size": self.to_q.lora_layer.out_features, | |
| "k_rank": self.to_k.lora_layer.rank, | |
| "k_hidden_size": self.to_k.lora_layer.out_features, | |
| "v_rank": self.to_v.lora_layer.rank, | |
| "v_hidden_size": self.to_v.lora_layer.out_features, | |
| "out_rank": self.to_out[0].lora_layer.rank, | |
| "out_hidden_size": self.to_out[0].lora_layer.out_features, | |
| } | |
| if hasattr(self.processor, "attention_op"): | |
| kwargs["attention_op"] = self.processor.attention_op | |
| lora_processor = lora_processor_cls(hidden_size, **kwargs) | |
| lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
| lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
| lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
| lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
| elif lora_processor_cls == LoRAAttnAddedKVProcessor: | |
| lora_processor = lora_processor_cls( | |
| hidden_size, | |
| cross_attention_dim=self.add_k_proj.weight.shape[0], | |
| rank=self.to_q.lora_layer.rank, | |
| network_alpha=self.to_q.lora_layer.network_alpha, | |
| ) | |
| lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
| lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
| lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
| lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
| # only save if used | |
| if self.add_k_proj.lora_layer is not None: | |
| lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) | |
| lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) | |
| else: | |
| lora_processor.add_k_proj_lora = None | |
| lora_processor.add_v_proj_lora = None | |
| else: | |
| raise ValueError(f"{lora_processor_cls} does not exist.") | |
| return lora_processor | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| **cross_attention_kwargs, | |
| ) -> torch.Tensor: | |
| r""" | |
| The forward method of the `Attention` class. | |
| Args: | |
| hidden_states (`torch.Tensor`): | |
| The hidden states of the query. | |
| encoder_hidden_states (`torch.Tensor`, *optional*): | |
| The hidden states of the encoder. | |
| attention_mask (`torch.Tensor`, *optional*): | |
| The attention mask to use. If `None`, no mask is applied. | |
| **cross_attention_kwargs: | |
| Additional keyword arguments to pass along to the cross attention. | |
| Returns: | |
| `torch.Tensor`: The output of the attention layer. | |
| """ | |
| # The `Attention` class can call different attention processors / attention functions | |
| # here we simply pass along all tensors to the selected processor class | |
| # For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
| return self.processor( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: | |
| r""" | |
| Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` | |
| is the number of heads initialized while constructing the `Attention` class. | |
| Args: | |
| tensor (`torch.Tensor`): The tensor to reshape. | |
| Returns: | |
| `torch.Tensor`: The reshaped tensor. | |
| """ | |
| head_size = self.heads | |
| batch_size, seq_len, dim = tensor.shape | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: | |
| r""" | |
| Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is | |
| the number of heads initialized while constructing the `Attention` class. | |
| Args: | |
| tensor (`torch.Tensor`): The tensor to reshape. | |
| out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is | |
| reshaped to `[batch_size * heads, seq_len, dim // heads]`. | |
| Returns: | |
| `torch.Tensor`: The reshaped tensor. | |
| """ | |
| head_size = self.heads | |
| batch_size, seq_len, dim = tensor.shape | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3) | |
| if out_dim == 3: | |
| tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def get_attention_scores( | |
| self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None | |
| ) -> torch.Tensor: | |
| r""" | |
| Compute the attention scores. | |
| Args: | |
| query (`torch.Tensor`): The query tensor. | |
| key (`torch.Tensor`): The key tensor. | |
| attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
| Returns: | |
| `torch.Tensor`: The attention probabilities/scores. | |
| """ | |
| dtype = query.dtype | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| if attention_mask is None: | |
| baddbmm_input = torch.empty( | |
| query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
| ) | |
| beta = 0 | |
| else: | |
| baddbmm_input = attention_mask | |
| beta = 1 | |
| attention_scores = torch.baddbmm( | |
| baddbmm_input, | |
| query, | |
| key.transpose(-1, -2), | |
| beta=beta, | |
| alpha=self.scale, | |
| ) | |
| del baddbmm_input | |
| if self.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| del attention_scores | |
| attention_probs = attention_probs.to(dtype) | |
| return attention_probs | |
| def prepare_attention_mask( | |
| self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3 | |
| ) -> torch.Tensor: | |
| r""" | |
| Prepare the attention mask for the attention computation. | |
| Args: | |
| attention_mask (`torch.Tensor`): | |
| The attention mask to prepare. | |
| target_length (`int`): | |
| The target length of the attention mask. This is the length of the attention mask after padding. | |
| batch_size (`int`): | |
| The batch size, which is used to repeat the attention mask. | |
| out_dim (`int`, *optional*, defaults to `3`): | |
| The output dimension of the attention mask. Can be either `3` or `4`. | |
| Returns: | |
| `torch.Tensor`: The prepared attention mask. | |
| """ | |
| head_size = self.heads | |
| if attention_mask is None: | |
| return attention_mask | |
| current_length: int = attention_mask.shape[-1] | |
| if current_length != target_length: | |
| if attention_mask.device.type == "mps": | |
| # HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
| # Instead, we can manually construct the padding tensor. | |
| padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) | |
| padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) | |
| attention_mask = torch.cat([attention_mask, padding], dim=2) | |
| else: | |
| # TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
| # we want to instead pad by (0, remaining_length), where remaining_length is: | |
| # remaining_length: int = target_length - current_length | |
| # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| if out_dim == 3: | |
| if attention_mask.shape[0] < batch_size * head_size: | |
| attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | |
| elif out_dim == 4: | |
| attention_mask = attention_mask.unsqueeze(1) | |
| attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | |
| return attention_mask | |
| def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
| r""" | |
| Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the | |
| `Attention` class. | |
| Args: | |
| encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. | |
| Returns: | |
| `torch.Tensor`: The normalized encoder hidden states. | |
| """ | |
| assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | |
| if isinstance(self.norm_cross, nn.LayerNorm): | |
| encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
| elif isinstance(self.norm_cross, nn.GroupNorm): | |
| # Group norm norms along the channels dimension and expects | |
| # input to be in the shape of (N, C, *). In this case, we want | |
| # to norm along the hidden dimension, so we need to move | |
| # (batch_size, sequence_length, hidden_size) -> | |
| # (batch_size, hidden_size, sequence_length) | |
| encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
| encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
| encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
| else: | |
| assert False | |
| return encoder_hidden_states | |
| def _init_compress(self): | |
| if len(self.compress_kv_factor) == 2: | |
| self.sr = nn.Conv2d(self.inner_dim, self.inner_dim, groups=self.inner_dim, kernel_size=self.compress_kv_factor, stride=self.compress_kv_factor) | |
| self.sr.weight.data.fill_(1/self.compress_kv_factor[0]**2) | |
| elif len(self.compress_kv_factor) == 1: | |
| self.kernel_size = self.compress_kv_factor[0] | |
| self.sr = nn.Conv1d(self.inner_dim, self.inner_dim, groups=self.inner_dim, kernel_size=self.compress_kv_factor[0], stride=self.compress_kv_factor[0]) | |
| self.sr.weight.data.fill_(1/self.compress_kv_factor[0]) | |
| self.sr.bias.data.zero_() | |
| self.norm = nn.LayerNorm(self.inner_dim) | |
| class AttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
| """ | |
| def __init__(self, dim=1152, attention_mode='xformers', use_rope=False, rope_scaling=None, compress_kv_factor=None): | |
| self.dim = dim | |
| self.attention_mode = attention_mode | |
| self.use_rope = use_rope | |
| self.rope_scaling = rope_scaling | |
| self.compress_kv_factor = compress_kv_factor | |
| if self.use_rope: | |
| self._init_rope() | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def _init_rope(self): | |
| if self.rope_scaling is None: | |
| self.rope2d = RoPE2D() | |
| self.rope1d = RoPE1D() | |
| else: | |
| scaling_type = self.rope_scaling["type"] | |
| scaling_factor_2d = self.rope_scaling["factor_2d"] | |
| scaling_factor_1d = self.rope_scaling["factor_1d"] | |
| if scaling_type == "linear": | |
| self.rope2d = LinearScalingRoPE2D(scaling_factor=scaling_factor_2d) | |
| self.rope1d = LinearScalingRoPE1D(scaling_factor=scaling_factor_1d) | |
| else: | |
| raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| temb: Optional[torch.FloatTensor] = None, | |
| scale: float = 1.0, | |
| position_q: Optional[torch.LongTensor] = None, | |
| position_k: Optional[torch.LongTensor] = None, | |
| last_shape: Tuple[int] = None, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| if attn.spatial_norm is not None: | |
| hidden_states = attn.spatial_norm(hidden_states, temb) | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| if self.compress_kv_factor is not None: | |
| batch_size = hidden_states.shape[0] | |
| if len(last_shape) == 2: | |
| encoder_hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, self.dim, *last_shape) | |
| encoder_hidden_states = attn.sr(encoder_hidden_states).reshape(batch_size, self.dim, -1).permute(0, 2, 1) | |
| elif len(last_shape) == 1: | |
| encoder_hidden_states = hidden_states.permute(0, 2, 1) | |
| if last_shape[0] % 2 == 1: | |
| first_frame_pad = encoder_hidden_states[:, :, :1].repeat((1, 1, attn.kernel_size - 1)) | |
| encoder_hidden_states = torch.concatenate((first_frame_pad, encoder_hidden_states), dim=2) | |
| encoder_hidden_states = attn.sr(encoder_hidden_states).permute(0, 2, 1) | |
| else: | |
| raise NotImplementedError(f'NotImplementedError with last_shape {last_shape}') | |
| encoder_hidden_states = attn.norm(encoder_hidden_states) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| if attn.group_norm is not None: | |
| hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| args = () if USE_PEFT_BACKEND else (scale,) | |
| query = attn.to_q(hidden_states, *args) | |
| if encoder_hidden_states is None: | |
| encoder_hidden_states = hidden_states | |
| elif attn.norm_cross: | |
| encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| key = attn.to_k(encoder_hidden_states, *args) | |
| value = attn.to_v(encoder_hidden_states, *args) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if self.use_rope: | |
| # require the shape of (batch_size x nheads x ntokens x dim) | |
| if position_q.ndim == 3: | |
| query = self.rope2d(query, position_q) | |
| elif position_q.ndim == 2: | |
| query = self.rope1d(query, position_q) | |
| else: | |
| raise NotImplementedError | |
| if position_k.ndim == 3: | |
| key = self.rope2d(key, position_k) | |
| elif position_k.ndim == 2: | |
| key = self.rope1d(key, position_k) | |
| else: | |
| raise NotImplementedError | |
| # the output of sdp = (batch, num_heads, seq_len, head_dim) | |
| # TODO: add support for attn.scale when we move to Torch 2.1 | |
| if self.attention_mode == 'flash': | |
| assert attention_mask is None or torch.all(attention_mask.bool()), 'flash-attn do not support attention_mask' | |
| with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False): | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, dropout_p=0.0, is_causal=False | |
| ) | |
| elif self.attention_mode == 'xformers': | |
| with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=False, enable_mem_efficient=True): | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| elif self.attention_mode == 'math': | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| else: | |
| raise NotImplementedError(f'Found attention_mode: {self.attention_mode}') | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states, *args) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if attn.residual_connection: | |
| hidden_states = hidden_states + residual | |
| hidden_states = hidden_states / attn.rescale_output_factor | |
| return hidden_states | |
| class GatedSelfAttentionDense(nn.Module): | |
| r""" | |
| A gated self-attention dense layer that combines visual features and object features. | |
| Parameters: | |
| query_dim (`int`): The number of channels in the query. | |
| context_dim (`int`): The number of channels in the context. | |
| n_heads (`int`): The number of heads to use for attention. | |
| d_head (`int`): The number of channels in each head. | |
| """ | |
| def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
| super().__init__() | |
| # we need a linear projection since we need cat visual feature and obj feature | |
| self.linear = nn.Linear(context_dim, query_dim) | |
| self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
| self.ff = FeedForward(query_dim, activation_fn="geglu") | |
| self.norm1 = nn.LayerNorm(query_dim) | |
| self.norm2 = nn.LayerNorm(query_dim) | |
| self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
| self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
| self.enabled = True | |
| def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
| if not self.enabled: | |
| return x | |
| n_visual = x.shape[1] | |
| objs = self.linear(objs) | |
| x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
| x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
| return x | |
| class FeedForward(nn.Module): | |
| r""" | |
| A feed-forward layer. | |
| Parameters: | |
| dim (`int`): The number of channels in the input. | |
| dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
| mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| dim_out: Optional[int] = None, | |
| mult: int = 4, | |
| dropout: float = 0.0, | |
| activation_fn: str = "geglu", | |
| final_dropout: bool = False, | |
| ): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = dim_out if dim_out is not None else dim | |
| linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear | |
| if activation_fn == "gelu": | |
| act_fn = GELU(dim, inner_dim) | |
| if activation_fn == "gelu-approximate": | |
| act_fn = GELU(dim, inner_dim, approximate="tanh") | |
| elif activation_fn == "geglu": | |
| act_fn = GEGLU(dim, inner_dim) | |
| elif activation_fn == "geglu-approximate": | |
| act_fn = ApproximateGELU(dim, inner_dim) | |
| self.net = nn.ModuleList([]) | |
| # project in | |
| self.net.append(act_fn) | |
| # project dropout | |
| self.net.append(nn.Dropout(dropout)) | |
| # project out | |
| self.net.append(linear_cls(inner_dim, dim_out)) | |
| # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
| if final_dropout: | |
| self.net.append(nn.Dropout(dropout)) | |
| def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: | |
| compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear) | |
| for module in self.net: | |
| if isinstance(module, compatible_cls): | |
| hidden_states = module(hidden_states, scale) | |
| else: | |
| hidden_states = module(hidden_states) | |
| return hidden_states | |
| class BasicTransformerBlock_(nn.Module): | |
| r""" | |
| A basic Transformer block. | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| num_embeds_ada_norm (: | |
| obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
| attention_bias (: | |
| obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
| only_cross_attention (`bool`, *optional*): | |
| Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
| double_self_attention (`bool`, *optional*): | |
| Whether to use two self-attention layers. In this case no cross attention layers are used. | |
| upcast_attention (`bool`, *optional*): | |
| Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
| The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
| final_dropout (`bool` *optional*, defaults to False): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| attention_type (`str`, *optional*, defaults to `"default"`): | |
| The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
| positional_embeddings (`str`, *optional*, defaults to `None`): | |
| The type of positional embeddings to apply to. | |
| num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
| The maximum number of positional embeddings to apply. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_elementwise_affine: bool = True, | |
| norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
| norm_eps: float = 1e-5, | |
| final_dropout: bool = False, | |
| attention_type: str = "default", | |
| positional_embeddings: Optional[str] = None, | |
| num_positional_embeddings: Optional[int] = None, | |
| attention_mode: str = "xformers", | |
| use_rope: bool = False, | |
| rope_scaling: Optional[Dict] = None, | |
| compress_kv_factor: Optional[Tuple] = None, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
| self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
| self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
| self.use_layer_norm = norm_type == "layer_norm" | |
| if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
| raise ValueError( | |
| f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
| f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
| ) | |
| if positional_embeddings and (num_positional_embeddings is None): | |
| raise ValueError( | |
| "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
| ) | |
| if positional_embeddings == "sinusoidal": | |
| self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
| else: | |
| self.pos_embed = None | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # 1. Self-Attn | |
| if self.use_ada_layer_norm: | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| elif self.use_ada_layer_norm_zero: | |
| self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
| else: | |
| self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| upcast_attention=upcast_attention, | |
| attention_mode=attention_mode, | |
| use_rope=use_rope, | |
| rope_scaling=rope_scaling, | |
| compress_kv_factor=compress_kv_factor, | |
| ) | |
| # # 2. Cross-Attn | |
| # if cross_attention_dim is not None or double_self_attention: | |
| # # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
| # # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
| # # the second cross attention block. | |
| # self.norm2 = ( | |
| # AdaLayerNorm(dim, num_embeds_ada_norm) | |
| # if self.use_ada_layer_norm | |
| # else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| # ) | |
| # self.attn2 = Attention( | |
| # query_dim=dim, | |
| # cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
| # heads=num_attention_heads, | |
| # dim_head=attention_head_dim, | |
| # dropout=dropout, | |
| # bias=attention_bias, | |
| # upcast_attention=upcast_attention, | |
| # ) # is self-attn if encoder_hidden_states is none | |
| # else: | |
| # self.norm2 = None | |
| # self.attn2 = None | |
| # 3. Feed-forward | |
| # if not self.use_ada_layer_norm_single: | |
| # self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
| # 4. Fuser | |
| if attention_type == "gated" or attention_type == "gated-text-image": | |
| self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
| # 5. Scale-shift for PixArt-Alpha. | |
| if self.use_ada_layer_norm_single: | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim ** 0.5) | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| position_q: Optional[torch.LongTensor] = None, | |
| position_k: Optional[torch.LongTensor] = None, | |
| frame: int = None, | |
| ) -> torch.FloatTensor: | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Self-Attention | |
| batch_size = hidden_states.shape[0] | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero: | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
| hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| elif self.use_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| elif self.use_ada_layer_norm_single: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
| ).chunk(6, dim=1) | |
| norm_hidden_states = self.norm1(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
| norm_hidden_states = norm_hidden_states.squeeze(1) | |
| else: | |
| raise ValueError("Incorrect norm used") | |
| if self.pos_embed is not None: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| # 1. Retrieve lora scale. | |
| lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
| # 2. Prepare GLIGEN inputs | |
| cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
| gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| position_q=position_q, | |
| position_k=position_k, | |
| last_shape=frame, | |
| **cross_attention_kwargs, | |
| ) | |
| if self.use_ada_layer_norm_zero: | |
| attn_output = gate_msa.unsqueeze(1) * attn_output | |
| elif self.use_ada_layer_norm_single: | |
| attn_output = gate_msa * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| # 2.5 GLIGEN Control | |
| if gligen_kwargs is not None: | |
| hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
| # # 3. Cross-Attention | |
| # if self.attn2 is not None: | |
| # if self.use_ada_layer_norm: | |
| # norm_hidden_states = self.norm2(hidden_states, timestep) | |
| # elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
| # norm_hidden_states = self.norm2(hidden_states) | |
| # elif self.use_ada_layer_norm_single: | |
| # # For PixArt norm2 isn't applied here: | |
| # # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
| # norm_hidden_states = hidden_states | |
| # else: | |
| # raise ValueError("Incorrect norm") | |
| # if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | |
| # norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| # attn_output = self.attn2( | |
| # norm_hidden_states, | |
| # encoder_hidden_states=encoder_hidden_states, | |
| # attention_mask=encoder_attention_mask, | |
| # **cross_attention_kwargs, | |
| # ) | |
| # hidden_states = attn_output + hidden_states | |
| # 4. Feed-forward | |
| # if not self.use_ada_layer_norm_single: | |
| # norm_hidden_states = self.norm3(hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| if self.use_ada_layer_norm_single: | |
| # norm_hidden_states = self.norm2(hidden_states) | |
| norm_hidden_states = self.norm3(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
| if self._chunk_size is not None: | |
| # "feed_forward_chunk_size" can be used to save memory | |
| if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
| raise ValueError( | |
| f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
| ) | |
| num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
| ff_output = torch.cat( | |
| [ | |
| self.ff(hid_slice, scale=lora_scale) | |
| for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
| ], | |
| dim=self._chunk_dim, | |
| ) | |
| else: | |
| ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
| if self.use_ada_layer_norm_zero: | |
| ff_output = gate_mlp.unsqueeze(1) * ff_output | |
| elif self.use_ada_layer_norm_single: | |
| ff_output = gate_mlp * ff_output | |
| hidden_states = ff_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| return hidden_states | |
| class BasicTransformerBlock(nn.Module): | |
| r""" | |
| A basic Transformer block. | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| num_embeds_ada_norm (: | |
| obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
| attention_bias (: | |
| obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
| only_cross_attention (`bool`, *optional*): | |
| Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
| double_self_attention (`bool`, *optional*): | |
| Whether to use two self-attention layers. In this case no cross attention layers are used. | |
| upcast_attention (`bool`, *optional*): | |
| Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
| The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
| final_dropout (`bool` *optional*, defaults to False): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| attention_type (`str`, *optional*, defaults to `"default"`): | |
| The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
| positional_embeddings (`str`, *optional*, defaults to `None`): | |
| The type of positional embeddings to apply to. | |
| num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
| The maximum number of positional embeddings to apply. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_elementwise_affine: bool = True, | |
| norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
| norm_eps: float = 1e-5, | |
| final_dropout: bool = False, | |
| attention_type: str = "default", | |
| positional_embeddings: Optional[str] = None, | |
| num_positional_embeddings: Optional[int] = None, | |
| attention_mode: str = "xformers", | |
| use_rope: bool = False, | |
| rope_scaling: Optional[Dict] = None, | |
| compress_kv_factor: Optional[Tuple] = None, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
| self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
| self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
| self.use_layer_norm = norm_type == "layer_norm" | |
| if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
| raise ValueError( | |
| f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
| f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
| ) | |
| if positional_embeddings and (num_positional_embeddings is None): | |
| raise ValueError( | |
| "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
| ) | |
| if positional_embeddings == "sinusoidal": | |
| self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
| else: | |
| self.pos_embed = None | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # 1. Self-Attn | |
| if self.use_ada_layer_norm: | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| elif self.use_ada_layer_norm_zero: | |
| self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
| else: | |
| self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| upcast_attention=upcast_attention, | |
| attention_mode=attention_mode, | |
| use_rope=use_rope, | |
| rope_scaling=rope_scaling, | |
| compress_kv_factor=compress_kv_factor, | |
| ) | |
| # 2. Cross-Attn | |
| if cross_attention_dim is not None or double_self_attention: | |
| # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
| # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
| # the second cross attention block. | |
| self.norm2 = ( | |
| AdaLayerNorm(dim, num_embeds_ada_norm) | |
| if self.use_ada_layer_norm | |
| else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| ) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| attention_mode=attention_mode, # only xformers support attention_mask | |
| use_rope=False, # do not position in cross attention | |
| compress_kv_factor=None, | |
| ) # is self-attn if encoder_hidden_states is none | |
| else: | |
| self.norm2 = None | |
| self.attn2 = None | |
| # 3. Feed-forward | |
| if not self.use_ada_layer_norm_single: | |
| self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| ) | |
| # 4. Fuser | |
| if attention_type == "gated" or attention_type == "gated-text-image": | |
| self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
| # 5. Scale-shift for PixArt-Alpha. | |
| if self.use_ada_layer_norm_single: | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| position_q: Optional[torch.LongTensor] = None, | |
| position_k: Optional[torch.LongTensor] = None, | |
| hw: Tuple[int, int] = None, | |
| ) -> torch.FloatTensor: | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Self-Attention | |
| batch_size = hidden_states.shape[0] | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero: | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
| hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| elif self.use_layer_norm: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| elif self.use_ada_layer_norm_single: | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
| ).chunk(6, dim=1) | |
| norm_hidden_states = self.norm1(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
| norm_hidden_states = norm_hidden_states.squeeze(1) | |
| else: | |
| raise ValueError("Incorrect norm used") | |
| if self.pos_embed is not None: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| # 1. Retrieve lora scale. | |
| lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
| # 2. Prepare GLIGEN inputs | |
| cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
| gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| position_q=position_q, | |
| position_k=position_k, | |
| last_shape=hw, | |
| **cross_attention_kwargs, | |
| ) | |
| if self.use_ada_layer_norm_zero: | |
| attn_output = gate_msa.unsqueeze(1) * attn_output | |
| elif self.use_ada_layer_norm_single: | |
| attn_output = gate_msa * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| # 2.5 GLIGEN Control | |
| if gligen_kwargs is not None: | |
| hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
| # 3. Cross-Attention | |
| if self.attn2 is not None: | |
| if self.use_ada_layer_norm: | |
| norm_hidden_states = self.norm2(hidden_states, timestep) | |
| elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| elif self.use_ada_layer_norm_single: | |
| # For PixArt norm2 isn't applied here: | |
| # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
| norm_hidden_states = hidden_states | |
| else: | |
| raise ValueError("Incorrect norm") | |
| if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| position_q=None, # cross attn do not need relative position | |
| position_k=None, | |
| last_shape=None, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| # 4. Feed-forward | |
| if not self.use_ada_layer_norm_single: | |
| norm_hidden_states = self.norm3(hidden_states) | |
| if self.use_ada_layer_norm_zero: | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| if self.use_ada_layer_norm_single: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
| if self._chunk_size is not None: | |
| # "feed_forward_chunk_size" can be used to save memory | |
| ff_output = _chunked_feed_forward( | |
| self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale | |
| ) | |
| else: | |
| ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
| if self.use_ada_layer_norm_zero: | |
| ff_output = gate_mlp.unsqueeze(1) * ff_output | |
| elif self.use_ada_layer_norm_single: | |
| ff_output = gate_mlp * ff_output | |
| hidden_states = ff_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| return hidden_states | |
| class AdaLayerNormSingle(nn.Module): | |
| r""" | |
| Norm layer adaptive layer norm single (adaLN-single). | |
| As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). | |
| Parameters: | |
| embedding_dim (`int`): The size of each embedding vector. | |
| use_additional_conditions (`bool`): To use additional conditions for normalization or not. | |
| """ | |
| def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): | |
| super().__init__() | |
| self.emb = CombinedTimestepSizeEmbeddings( | |
| embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions | |
| ) | |
| self.silu = nn.SiLU() | |
| self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
| def forward( | |
| self, | |
| timestep: torch.Tensor, | |
| added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
| batch_size: int = None, | |
| hidden_dtype: Optional[torch.dtype] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| # No modulation happening here. | |
| embedded_timestep = self.emb(timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, | |
| aspect_ratio=None) | |
| return self.linear(self.silu(embedded_timestep)), embedded_timestep | |
| class Transformer3DModelOutput(BaseOutput): | |
| """ | |
| The output of [`Transformer2DModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
| The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
| distributions for the unnoised latent pixels. | |
| """ | |
| sample: torch.FloatTensor | |