Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import json | |
from dataclasses import dataclass | |
from einops import rearrange, repeat | |
from typing import Any, Dict, Optional, Tuple | |
from diffusers.models import Transformer2DModel | |
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate | |
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid, ImagePositionalEmbeddings | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from opensora.models.diffusion.utils.pos_embed import get_1d_sincos_pos_embed, PositionGetter1D, PositionGetter2D | |
from opensora.models.diffusion.latte.modules import PatchEmbed, BasicTransformerBlock, BasicTransformerBlock_, AdaLayerNormSingle, \ | |
Transformer3DModelOutput, CaptionProjection | |
class LatteT2V(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
""" | |
A 2D Transformer model for image-like data. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
This is fixed during training since it is used to learn a number of position embeddings. | |
num_vector_embeds (`int`, *optional*): | |
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): | |
The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
added to the hidden states. | |
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
patch_size_t: int = 1, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_type: str = "layer_norm", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
attention_type: str = "default", | |
caption_channels: int = None, | |
video_length: int = 16, | |
attention_mode: str = 'flash', | |
use_rope: bool = False, | |
model_max_length: int = 300, | |
rope_scaling_type: str = 'linear', | |
compress_kv_factor: int = 1, | |
interpolation_scale_1d: float = None, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
self.video_length = video_length | |
self.use_rope = use_rope | |
self.model_max_length = model_max_length | |
self.compress_kv_factor = compress_kv_factor | |
self.num_layers = num_layers | |
self.config.hidden_size = model_max_length | |
assert not (self.compress_kv_factor != 1 and use_rope), "Can not both enable compressing kv and using rope" | |
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear | |
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` | |
# Define whether input is continuous or discrete depending on configuration | |
self.is_input_continuous = (in_channels is not None) and (patch_size is None) | |
self.is_input_vectorized = num_vector_embeds is not None | |
# self.is_input_patches = in_channels is not None and patch_size is not None | |
self.is_input_patches = True | |
if norm_type == "layer_norm" and num_embeds_ada_norm is not None: | |
deprecation_message = ( | |
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" | |
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config." | |
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" | |
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" | |
" would be very nice if you could open a Pull request for the `transformer/config.json` file" | |
) | |
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) | |
norm_type = "ada_norm" | |
# 2. Define input layers | |
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size" | |
self.height = sample_size[0] | |
self.width = sample_size[1] | |
self.patch_size = patch_size | |
interpolation_scale_2d = self.config.sample_size[0] // 64 # => 64 (= 512 pixart) has interpolation scale 1 | |
interpolation_scale_2d = max(interpolation_scale_2d, 1) | |
self.pos_embed = PatchEmbed( | |
height=sample_size[0], | |
width=sample_size[1], | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
interpolation_scale=interpolation_scale_2d, | |
) | |
# define temporal positional embedding | |
if interpolation_scale_1d is None: | |
if self.config.video_length % 2 == 1: | |
interpolation_scale_1d = (self.config.video_length - 1) // 16 # => 16 (= 16 Latte) has interpolation scale 1 | |
else: | |
interpolation_scale_1d = self.config.video_length // 16 # => 16 (= 16 Latte) has interpolation scale 1 | |
# interpolation_scale_1d = self.config.video_length // 5 # | |
interpolation_scale_1d = max(interpolation_scale_1d, 1) | |
temp_pos_embed = get_1d_sincos_pos_embed(inner_dim, video_length, interpolation_scale=interpolation_scale_1d) # 1152 hidden size | |
self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False) | |
rope_scaling = None | |
if self.use_rope: | |
self.position_getter_2d = PositionGetter2D() | |
self.position_getter_1d = PositionGetter1D() | |
rope_scaling = dict(type=rope_scaling_type, factor_2d=interpolation_scale_2d, factor_1d=interpolation_scale_1d) | |
# 3. Define transformers blocks, spatial attention | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
attention_mode=attention_mode, | |
use_rope=use_rope, | |
rope_scaling=rope_scaling, | |
compress_kv_factor=(compress_kv_factor, compress_kv_factor) if d >= num_layers // 2 and compress_kv_factor != 1 else None, # follow pixart-sigma, apply in second-half layers | |
) | |
for d in range(num_layers) | |
] | |
) | |
# Define temporal transformers blocks | |
self.temporal_transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock_( # one attention | |
inner_dim, | |
num_attention_heads, # num_attention_heads | |
attention_head_dim, # attention_head_dim 72 | |
dropout=dropout, | |
cross_attention_dim=None, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=False, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
attention_mode=attention_mode, | |
use_rope=use_rope, | |
rope_scaling=rope_scaling, | |
compress_kv_factor=(compress_kv_factor, ) if d >= num_layers // 2 and compress_kv_factor != 1 else None, # follow pixart-sigma, apply in second-half layers | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
self.out_channels = in_channels if out_channels is None else out_channels | |
if self.is_input_continuous: | |
# TODO: should use out_channels for continuous projections | |
if use_linear_projection: | |
self.proj_out = linear_cls(inner_dim, in_channels) | |
else: | |
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
self.norm_out = nn.LayerNorm(inner_dim) | |
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) | |
elif self.is_input_patches and norm_type != "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) | |
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
elif self.is_input_patches and norm_type == "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim ** 0.5) | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
# 5. PixArt-Alpha blocks. | |
self.adaln_single = None | |
self.use_additional_conditions = False | |
if norm_type == "ada_norm_single": | |
# self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024 | |
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use | |
# additional conditions until we find better name | |
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) | |
self.caption_projection = None | |
if caption_channels is not None: | |
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def make_position(self, b, t, use_image_num, h, w, device): | |
pos_hw = self.position_getter_2d(b*(t+use_image_num), h, w, device) # fake_b = b*(t+use_image_num) | |
pos_t = self.position_getter_1d(b*h*w, t, device) # fake_b = b*h*w | |
return pos_hw, pos_t | |
def make_attn_mask(self, attention_mask, frame, dtype): | |
attention_mask = rearrange(attention_mask, 'b t h w -> (b t) 1 (h w)') | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(dtype)) * -10000.0 | |
attention_mask = attention_mask.to(self.dtype) | |
return attention_mask | |
def vae_to_diff_mask(self, attention_mask, use_image_num): | |
dtype = attention_mask.dtype | |
# b, t+use_image_num, h, w, assume t as channel | |
# this version do not use 3d patch embedding | |
attention_mask = F.max_pool2d(attention_mask, kernel_size=(self.patch_size, self.patch_size), stride=(self.patch_size, self.patch_size)) | |
attention_mask = attention_mask.bool().to(dtype) | |
return attention_mask | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Optional[torch.LongTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
use_image_num: int = 0, | |
enable_temporal_attentions: bool = True, | |
return_dict: bool = True, | |
): | |
""" | |
The [`Transformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): | |
Input `hidden_states`. | |
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
attention_mask ( `torch.Tensor`, *optional*): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
encoder_attention_mask ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
input_batch_size, c, frame, h, w = hidden_states.shape | |
frame = frame - use_image_num # 20-4=16 | |
hidden_states = rearrange(hidden_states, 'b c f h w -> (b f) c h w').contiguous() | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is None: | |
attention_mask = torch.ones((input_batch_size, frame+use_image_num, h, w), device=hidden_states.device, dtype=hidden_states.dtype) | |
attention_mask = self.vae_to_diff_mask(attention_mask, use_image_num) | |
dtype = attention_mask.dtype | |
attention_mask_compress = F.max_pool2d(attention_mask.float(), kernel_size=self.compress_kv_factor, stride=self.compress_kv_factor) | |
attention_mask_compress = attention_mask_compress.to(dtype) | |
attention_mask = self.make_attn_mask(attention_mask, frame, hidden_states.dtype) | |
attention_mask_compress = self.make_attn_mask(attention_mask_compress, frame, hidden_states.dtype) | |
# 1 + 4, 1 -> video condition, 4 -> image condition | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: # ndim == 2 means no image joint | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
encoder_attention_mask = repeat(encoder_attention_mask, 'b 1 l -> (b f) 1 l', f=frame).contiguous() | |
encoder_attention_mask = encoder_attention_mask.to(self.dtype) | |
elif encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: # ndim == 3 means image joint | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask_video = encoder_attention_mask[:, :1, ...] | |
encoder_attention_mask_video = repeat(encoder_attention_mask_video, 'b 1 l -> b (1 f) l', | |
f=frame).contiguous() | |
encoder_attention_mask_image = encoder_attention_mask[:, 1:, ...] | |
encoder_attention_mask = torch.cat([encoder_attention_mask_video, encoder_attention_mask_image], dim=1) | |
encoder_attention_mask = rearrange(encoder_attention_mask, 'b n l -> (b n) l').contiguous().unsqueeze(1) | |
encoder_attention_mask = encoder_attention_mask.to(self.dtype) | |
# Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 1. Input | |
if self.is_input_patches: # here | |
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
hw = (height, width) | |
num_patches = height * width | |
hidden_states = self.pos_embed(hidden_states.to(self.dtype)) # alrady add positional embeddings | |
if self.adaln_single is not None: | |
if self.use_additional_conditions and added_cond_kwargs is None: | |
raise ValueError( | |
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." | |
) | |
# batch_size = hidden_states.shape[0] | |
batch_size = input_batch_size | |
timestep, embedded_timestep = self.adaln_single( | |
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
) | |
# 2. Blocks | |
if self.caption_projection is not None: | |
batch_size = hidden_states.shape[0] | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states.to(self.dtype)) # 3 120 1152 | |
if use_image_num != 0 and self.training: | |
encoder_hidden_states_video = encoder_hidden_states[:, :1, ...] | |
encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b 1 t d -> b (1 f) t d', f=frame).contiguous() | |
encoder_hidden_states_image = encoder_hidden_states[:, 1:, ...] | |
encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1) | |
encoder_hidden_states_spatial = rearrange(encoder_hidden_states, 'b f t d -> (b f) t d').contiguous() | |
else: | |
encoder_hidden_states_spatial = repeat(encoder_hidden_states, 'b t d -> (b f) t d', f=frame).contiguous() | |
# prepare timesteps for spatial and temporal block | |
timestep_spatial = repeat(timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous() | |
timestep_temp = repeat(timestep, 'b d -> (b p) d', p=num_patches).contiguous() | |
pos_hw, pos_t = None, None | |
if self.use_rope: | |
pos_hw, pos_t = self.make_position(input_batch_size, frame, use_image_num, height, width, hidden_states.device) | |
for i, (spatial_block, temp_block) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)): | |
if self.training and self.gradient_checkpointing: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
spatial_block, | |
hidden_states, | |
attention_mask_compress if i >= self.num_layers // 2 else attention_mask, | |
encoder_hidden_states_spatial, | |
encoder_attention_mask, | |
timestep_spatial, | |
cross_attention_kwargs, | |
class_labels, | |
pos_hw, | |
pos_hw, | |
hw, | |
use_reentrant=False, | |
) | |
if enable_temporal_attentions: | |
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous() | |
if use_image_num != 0: # image-video joitn training | |
hidden_states_video = hidden_states[:, :frame, ...] | |
hidden_states_image = hidden_states[:, frame:, ...] | |
# if i == 0 and not self.use_rope: | |
if i == 0: | |
hidden_states_video = hidden_states_video + self.temp_pos_embed | |
hidden_states_video = torch.utils.checkpoint.checkpoint( | |
temp_block, | |
hidden_states_video, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame, ), | |
use_reentrant=False, | |
) | |
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) | |
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', | |
b=input_batch_size).contiguous() | |
else: | |
# if i == 0 and not self.use_rope: | |
if i == 0: | |
hidden_states = hidden_states + self.temp_pos_embed | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
temp_block, | |
hidden_states, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame, ), | |
use_reentrant=False, | |
) | |
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', | |
b=input_batch_size).contiguous() | |
else: | |
hidden_states = spatial_block( | |
hidden_states, | |
attention_mask_compress if i >= self.num_layers // 2 else attention_mask, | |
encoder_hidden_states_spatial, | |
encoder_attention_mask, | |
timestep_spatial, | |
cross_attention_kwargs, | |
class_labels, | |
pos_hw, | |
pos_hw, | |
hw, | |
) | |
if enable_temporal_attentions: | |
# b c f h w, f = 16 + 4 | |
hidden_states = rearrange(hidden_states, '(b f) t d -> (b t) f d', b=input_batch_size).contiguous() | |
if use_image_num != 0 and self.training: | |
hidden_states_video = hidden_states[:, :frame, ...] | |
hidden_states_image = hidden_states[:, frame:, ...] | |
# if i == 0 and not self.use_rope: | |
# hidden_states_video = hidden_states_video + self.temp_pos_embed | |
hidden_states_video = temp_block( | |
hidden_states_video, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame, ), | |
) | |
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) | |
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', | |
b=input_batch_size).contiguous() | |
else: | |
# if i == 0 and not self.use_rope: | |
if i == 0: | |
hidden_states = hidden_states + self.temp_pos_embed | |
hidden_states = temp_block( | |
hidden_states, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame, ), | |
) | |
hidden_states = rearrange(hidden_states, '(b t) f d -> (b f) t d', | |
b=input_batch_size).contiguous() | |
if self.is_input_patches: | |
if self.config.norm_type != "ada_norm_single": | |
conditioning = self.transformer_blocks[0].norm1.emb( | |
timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
hidden_states = self.proj_out_2(hidden_states) | |
elif self.config.norm_type == "ada_norm_single": | |
embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame + use_image_num).contiguous() | |
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.proj_out(hidden_states) | |
# unpatchify | |
if self.adaln_single is None: | |
height = width = int(hidden_states.shape[1] ** 0.5) | |
hidden_states = hidden_states.reshape( | |
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
) | |
output = rearrange(output, '(b f) c h w -> b c f h w', b=input_batch_size).contiguous() | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, **kwargs): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
model = cls.from_config(config, **kwargs) | |
return model | |
# depth = num_layers * 2 | |
def LatteT2V_XL_122(**kwargs): | |
return LatteT2V(num_layers=28, attention_head_dim=72, num_attention_heads=16, patch_size_t=1, patch_size=2, | |
norm_type="ada_norm_single", caption_channels=4096, cross_attention_dim=1152, **kwargs) | |
def LatteT2V_D64_XL_122(**kwargs): | |
return LatteT2V(num_layers=28, attention_head_dim=64, num_attention_heads=18, patch_size_t=1, patch_size=2, | |
norm_type="ada_norm_single", caption_channels=4096, cross_attention_dim=1152, **kwargs) | |
Latte_models = { | |
"LatteT2V-XL/122": LatteT2V_XL_122, | |
"LatteT2V-D64-XL/122": LatteT2V_D64_XL_122, | |
} | |
if __name__ == '__main__': | |
from opensora.models.ae import ae_channel_config, ae_stride_config | |
from opensora.models.ae import getae, getae_wrapper | |
from opensora.models.ae.videobase import CausalVQVAEModelWrapper, CausalVAEModelWrapper | |
args = type('args', (), | |
{ | |
'ae': 'CausalVAEModel_4x8x8', | |
'attention_mode': 'xformers', | |
'use_rope': False, | |
'model_max_length': 300, | |
'max_image_size': 512, | |
'num_frames': 65, | |
'use_image_num': 16, | |
'compress_kv_factor': 1 | |
} | |
) | |
b = 2 | |
c = 4 | |
cond_c = 4096 | |
num_timesteps = 1000 | |
ae_stride_t, ae_stride_h, ae_stride_w = ae_stride_config[args.ae] | |
latent_size = (args.max_image_size // ae_stride_h, args.max_image_size // ae_stride_w) | |
if getae_wrapper(args.ae) == CausalVQVAEModelWrapper or getae_wrapper(args.ae) == CausalVAEModelWrapper: | |
args.video_length = video_length = (args.num_frames - 1) // ae_stride_t + 1 | |
else: | |
video_length = args.num_frames // ae_stride_t | |
device = torch.device('cuda:6') | |
model = LatteT2V_D64_XL_122( | |
in_channels=ae_channel_config[args.ae], | |
out_channels=ae_channel_config[args.ae] * 2, | |
# caption_channels=4096, | |
# cross_attention_dim=1152, | |
attention_bias=True, | |
sample_size=latent_size, | |
num_vector_embeds=None, | |
activation_fn="gelu-approximate", | |
num_embeds_ada_norm=1000, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
double_self_attention=False, | |
upcast_attention=False, | |
# norm_type="ada_norm_single", | |
norm_elementwise_affine=False, | |
norm_eps=1e-6, | |
attention_type='default', | |
video_length=video_length, | |
attention_mode=args.attention_mode, | |
compress_kv_factor=args.compress_kv_factor, | |
use_rope=args.use_rope, | |
model_max_length=args.model_max_length, | |
).to(device) | |
# try: | |
# ckpt = torch.load(r"t2v.pt", map_location='cpu')['model'] | |
# model.load_state_dict(ckpt) | |
# except Exception as e: | |
# print(e) | |
print(model) | |
x = torch.randn(b, c, 1+(args.num_frames-1)//ae_stride_t+args.use_image_num, args.max_image_size//ae_stride_h, args.max_image_size//ae_stride_w).to(device) | |
cond = torch.randn(b, 1+args.use_image_num, args.model_max_length, cond_c).to(device) | |
attn_mask = torch.randint(0, 2, (b, 1+args.use_image_num, args.max_image_size//ae_stride_h//2, args.max_image_size//ae_stride_w//2)).to(device) # B L or B 1+num_images L | |
cond_mask = torch.randint(0, 2, (b, 1+args.use_image_num, args.model_max_length)).to(device) # B L or B 1+num_images L | |
timestep = torch.randint(0, 1000, (b,), device=device) | |
model_kwargs = dict(hidden_states=x, encoder_hidden_states=cond, attention_mask=attn_mask, | |
encoder_attention_mask=cond_mask, use_image_num=args.use_image_num, timestep=timestep) | |
with torch.no_grad(): | |
output = model(**model_kwargs) | |
# print(output) |