File size: 11,153 Bytes
dd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import base64
import dataclasses
import io
import logging

import numpy as np
import openai
from PIL import Image

from browsergym.core.action.highlevel import HighLevelActionSet
from browsergym.core.action.python import PythonActionSet
from browsergym.experiments import AbstractAgentArgs, Agent
from browsergym.utils.obs import flatten_axtree_to_str, flatten_dom_to_str, prune_html

logger = logging.getLogger(__name__)


def image_to_jpg_base64_url(image: np.ndarray | Image.Image):
    """Convert a numpy array to a base64 encoded image url."""

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    if image.mode in ("RGBA", "LA"):
        image = image.convert("RGB")

    with io.BytesIO() as buffer:
        image.save(buffer, format="JPEG")
        image_base64 = base64.b64encode(buffer.getvalue()).decode()

    return f"data:image/jpeg;base64,{image_base64}"


class DemoAgent(Agent):
    """A basic agent using OpenAI API, to demonstrate BrowserGym's functionalities."""

    def obs_preprocessor(self, obs: dict) -> dict:

        return {
            "chat_messages": obs["chat_messages"],
            "screenshot": obs["screenshot"],
            "goal_object": obs["goal_object"],
            "last_action": obs["last_action"],
            "last_action_error": obs["last_action_error"],
            "open_pages_urls": obs["open_pages_urls"],
            "open_pages_titles": obs["open_pages_titles"],
            "active_page_index": obs["active_page_index"],
            "axtree_txt": flatten_axtree_to_str(obs["axtree_object"]),
            "pruned_html": prune_html(flatten_dom_to_str(obs["dom_object"])),
        }

    def __init__(
        self,
        model_name: str,
        chat_mode: bool,
        demo_mode: str,
        use_html: bool,
        use_axtree: bool,
        use_screenshot: bool,
    ) -> None:
        super().__init__()
        self.model_name = model_name
        self.chat_mode = chat_mode
        self.use_html = use_html
        self.use_axtree = use_axtree
        self.use_screenshot = use_screenshot

        if not (use_html or use_axtree):
            raise ValueError(f"Either use_html or use_axtree must be set to True.")

        self.openai_client = openai.OpenAI()

        self.action_set = HighLevelActionSet(
            subsets=["chat", "tab", "nav", "bid", "infeas"],  # define a subset of the action space
            # subsets=["chat", "bid", "coord", "infeas"] # allow the agent to also use x,y coordinates
            strict=False,  # less strict on the parsing of the actions
            multiaction=False,  # does not enable the agent to take multiple actions at once
            demo_mode=demo_mode,  # add visual effects
        )
        # use this instead to allow the agent to directly use Python code
        # self.action_set = PythonActionSet())

        self.action_history = []

    def get_action(self, obs: dict) -> tuple[str, dict]:
        system_msgs = []
        user_msgs = []

        if self.chat_mode:
            system_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
# Instructions

You are a UI Assistant, your goal is to help the user perform tasks using a web browser. You can
communicate with the user via a chat, to which the user gives you instructions and to which you
can send back messages. You have access to a web browser that both you and the user can see,
and with which only you can interact via specific commands.

Review the instructions from the user, the current state of the page and all other information
to find the best possible next action to accomplish your goal. Your answer will be interpreted
and executed by a program, make sure to follow the formatting instructions.
""",
                }
            )
            # append chat messages
            user_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
# Chat Messages
""",
                }
            )
            for msg in obs["chat_messages"]:
                if msg["role"] in ("user", "assistant", "infeasible"):
                    user_msgs.append(
                        {
                            "type": "text",
                            "text": f"""\
- [{msg['role']}] {msg['message']}
""",
                        }
                    )
                elif msg["role"] == "user_image":
                    user_msgs.append({"type": "image_url", "image_url": msg["message"]})
                else:
                    raise ValueError(f"Unexpected chat message role {repr(msg['role'])}")

        else:
            assert obs["goal_object"], "The goal is missing."
            system_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
# Instructions

Review the current state of the page and all other information to find the best
possible next action to accomplish your goal. Your answer will be interpreted
and executed by a program, make sure to follow the formatting instructions.
""",
                }
            )
            # append goal
            user_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
# Goal
""",
                }
            )
            # goal_object is directly presented as a list of openai-style messages
            user_msgs.extend(obs["goal_object"])

        # append url of all open tabs
        user_msgs.append(
            {
                "type": "text",
                "text": f"""\
# Currently open tabs
""",
            }
        )
        for page_index, (page_url, page_title) in enumerate(
            zip(obs["open_pages_urls"], obs["open_pages_titles"])
        ):
            user_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
Tab {page_index}{" (active tab)" if page_index == obs["active_page_index"] else ""}
  Title: {page_title}
  URL: {page_url}
""",
                }
            )

        # append page AXTree (if asked)
        if self.use_axtree:
            user_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
# Current page Accessibility Tree

{obs["axtree_txt"]}

""",
                }
            )
        # append page HTML (if asked)
        if self.use_html:
            user_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
# Current page DOM

{obs["pruned_html"]}

""",
                }
            )

        # append page screenshot (if asked)
        if self.use_screenshot:
            user_msgs.append(
                {
                    "type": "text",
                    "text": """\
# Current page Screenshot
""",
                }
            )
            user_msgs.append(
                {
                    "type": "image_url",
                    "image_url": {
                        "url": image_to_jpg_base64_url(obs["screenshot"]),
                        "detail": "auto",
                    },  # Literal["low", "high", "auto"] = "auto"
                }
            )

        # append action space description
        user_msgs.append(
            {
                "type": "text",
                "text": f"""\
# Action Space

{self.action_set.describe(with_long_description=False, with_examples=True)}

Here are examples of actions with chain-of-thought reasoning:

I now need to click on the Submit button to send the form. I will use the click action on the button, which has bid 12.
```click("12")```

I found the information requested by the user, I will send it to the chat.
```send_msg_to_user("The price for a 15\\" laptop is 1499 USD.")```

""",
            }
        )

        # append past actions (and last error message) if any
        if self.action_history:
            user_msgs.append(
                {
                    "type": "text",
                    "text": f"""\
# History of past actions
""",
                }
            )
            user_msgs.extend(
                [
                    {
                        "type": "text",
                        "text": f"""\

{action}
""",
                    }
                    for action in self.action_history
                ]
            )

            if obs["last_action_error"]:
                user_msgs.append(
                    {
                        "type": "text",
                        "text": f"""\
# Error message from last action

{obs["last_action_error"]}

""",
                    }
                )

        # ask for the next action
        user_msgs.append(
            {
                "type": "text",
                "text": f"""\
# Next action

You will now think step by step and produce your next best action. Reflect on your past actions, any resulting error message, and the current state of the page before deciding on your next action.
""",
            }
        )

        prompt_text_strings = []
        for message in system_msgs + user_msgs:
            match message["type"]:
                case "text":
                    prompt_text_strings.append(message["text"])
                case "image_url":
                    image_url = message["image_url"]
                    if isinstance(message["image_url"], dict):
                        image_url = image_url["url"]
                    if image_url.startswith("data:image"):
                        prompt_text_strings.append(
                            "image_url: " + image_url[:30] + "... (truncated)"
                        )
                    else:
                        prompt_text_strings.append("image_url: " + image_url)
                case _:
                    raise ValueError(
                        f"Unknown message type {repr(message['type'])} in the task goal."
                    )
        full_prompt_txt = "\n".join(prompt_text_strings)
        logger.info(full_prompt_txt)

        # query OpenAI model
        response = self.openai_client.chat.completions.create(
            model=self.model_name,
            messages=[
                {"role": "system", "content": system_msgs},
                {"role": "user", "content": user_msgs},
            ],
        )
        action = response.choices[0].message.content

        self.action_history.append(action)

        return action, {}


@dataclasses.dataclass
class DemoAgentArgs(AbstractAgentArgs):
    """
    This class is meant to store the arguments that define the agent.

    By isolating them in a dataclass, this ensures serialization without storing
    internal states of the agent.
    """

    model_name: str = "gpt-4o-mini"
    chat_mode: bool = False
    demo_mode: str = "off"
    use_html: bool = False
    use_axtree: bool = True
    use_screenshot: bool = False

    def make_agent(self):
        return DemoAgent(
            model_name=self.model_name,
            chat_mode=self.chat_mode,
            demo_mode=self.demo_mode,
            use_html=self.use_html,
            use_axtree=self.use_axtree,
            use_screenshot=self.use_screenshot,
        )