Spaces:
Running
Running
File size: 11,153 Bytes
dd39c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import base64
import dataclasses
import io
import logging
import numpy as np
import openai
from PIL import Image
from browsergym.core.action.highlevel import HighLevelActionSet
from browsergym.core.action.python import PythonActionSet
from browsergym.experiments import AbstractAgentArgs, Agent
from browsergym.utils.obs import flatten_axtree_to_str, flatten_dom_to_str, prune_html
logger = logging.getLogger(__name__)
def image_to_jpg_base64_url(image: np.ndarray | Image.Image):
"""Convert a numpy array to a base64 encoded image url."""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if image.mode in ("RGBA", "LA"):
image = image.convert("RGB")
with io.BytesIO() as buffer:
image.save(buffer, format="JPEG")
image_base64 = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/jpeg;base64,{image_base64}"
class DemoAgent(Agent):
"""A basic agent using OpenAI API, to demonstrate BrowserGym's functionalities."""
def obs_preprocessor(self, obs: dict) -> dict:
return {
"chat_messages": obs["chat_messages"],
"screenshot": obs["screenshot"],
"goal_object": obs["goal_object"],
"last_action": obs["last_action"],
"last_action_error": obs["last_action_error"],
"open_pages_urls": obs["open_pages_urls"],
"open_pages_titles": obs["open_pages_titles"],
"active_page_index": obs["active_page_index"],
"axtree_txt": flatten_axtree_to_str(obs["axtree_object"]),
"pruned_html": prune_html(flatten_dom_to_str(obs["dom_object"])),
}
def __init__(
self,
model_name: str,
chat_mode: bool,
demo_mode: str,
use_html: bool,
use_axtree: bool,
use_screenshot: bool,
) -> None:
super().__init__()
self.model_name = model_name
self.chat_mode = chat_mode
self.use_html = use_html
self.use_axtree = use_axtree
self.use_screenshot = use_screenshot
if not (use_html or use_axtree):
raise ValueError(f"Either use_html or use_axtree must be set to True.")
self.openai_client = openai.OpenAI()
self.action_set = HighLevelActionSet(
subsets=["chat", "tab", "nav", "bid", "infeas"], # define a subset of the action space
# subsets=["chat", "bid", "coord", "infeas"] # allow the agent to also use x,y coordinates
strict=False, # less strict on the parsing of the actions
multiaction=False, # does not enable the agent to take multiple actions at once
demo_mode=demo_mode, # add visual effects
)
# use this instead to allow the agent to directly use Python code
# self.action_set = PythonActionSet())
self.action_history = []
def get_action(self, obs: dict) -> tuple[str, dict]:
system_msgs = []
user_msgs = []
if self.chat_mode:
system_msgs.append(
{
"type": "text",
"text": f"""\
# Instructions
You are a UI Assistant, your goal is to help the user perform tasks using a web browser. You can
communicate with the user via a chat, to which the user gives you instructions and to which you
can send back messages. You have access to a web browser that both you and the user can see,
and with which only you can interact via specific commands.
Review the instructions from the user, the current state of the page and all other information
to find the best possible next action to accomplish your goal. Your answer will be interpreted
and executed by a program, make sure to follow the formatting instructions.
""",
}
)
# append chat messages
user_msgs.append(
{
"type": "text",
"text": f"""\
# Chat Messages
""",
}
)
for msg in obs["chat_messages"]:
if msg["role"] in ("user", "assistant", "infeasible"):
user_msgs.append(
{
"type": "text",
"text": f"""\
- [{msg['role']}] {msg['message']}
""",
}
)
elif msg["role"] == "user_image":
user_msgs.append({"type": "image_url", "image_url": msg["message"]})
else:
raise ValueError(f"Unexpected chat message role {repr(msg['role'])}")
else:
assert obs["goal_object"], "The goal is missing."
system_msgs.append(
{
"type": "text",
"text": f"""\
# Instructions
Review the current state of the page and all other information to find the best
possible next action to accomplish your goal. Your answer will be interpreted
and executed by a program, make sure to follow the formatting instructions.
""",
}
)
# append goal
user_msgs.append(
{
"type": "text",
"text": f"""\
# Goal
""",
}
)
# goal_object is directly presented as a list of openai-style messages
user_msgs.extend(obs["goal_object"])
# append url of all open tabs
user_msgs.append(
{
"type": "text",
"text": f"""\
# Currently open tabs
""",
}
)
for page_index, (page_url, page_title) in enumerate(
zip(obs["open_pages_urls"], obs["open_pages_titles"])
):
user_msgs.append(
{
"type": "text",
"text": f"""\
Tab {page_index}{" (active tab)" if page_index == obs["active_page_index"] else ""}
Title: {page_title}
URL: {page_url}
""",
}
)
# append page AXTree (if asked)
if self.use_axtree:
user_msgs.append(
{
"type": "text",
"text": f"""\
# Current page Accessibility Tree
{obs["axtree_txt"]}
""",
}
)
# append page HTML (if asked)
if self.use_html:
user_msgs.append(
{
"type": "text",
"text": f"""\
# Current page DOM
{obs["pruned_html"]}
""",
}
)
# append page screenshot (if asked)
if self.use_screenshot:
user_msgs.append(
{
"type": "text",
"text": """\
# Current page Screenshot
""",
}
)
user_msgs.append(
{
"type": "image_url",
"image_url": {
"url": image_to_jpg_base64_url(obs["screenshot"]),
"detail": "auto",
}, # Literal["low", "high", "auto"] = "auto"
}
)
# append action space description
user_msgs.append(
{
"type": "text",
"text": f"""\
# Action Space
{self.action_set.describe(with_long_description=False, with_examples=True)}
Here are examples of actions with chain-of-thought reasoning:
I now need to click on the Submit button to send the form. I will use the click action on the button, which has bid 12.
```click("12")```
I found the information requested by the user, I will send it to the chat.
```send_msg_to_user("The price for a 15\\" laptop is 1499 USD.")```
""",
}
)
# append past actions (and last error message) if any
if self.action_history:
user_msgs.append(
{
"type": "text",
"text": f"""\
# History of past actions
""",
}
)
user_msgs.extend(
[
{
"type": "text",
"text": f"""\
{action}
""",
}
for action in self.action_history
]
)
if obs["last_action_error"]:
user_msgs.append(
{
"type": "text",
"text": f"""\
# Error message from last action
{obs["last_action_error"]}
""",
}
)
# ask for the next action
user_msgs.append(
{
"type": "text",
"text": f"""\
# Next action
You will now think step by step and produce your next best action. Reflect on your past actions, any resulting error message, and the current state of the page before deciding on your next action.
""",
}
)
prompt_text_strings = []
for message in system_msgs + user_msgs:
match message["type"]:
case "text":
prompt_text_strings.append(message["text"])
case "image_url":
image_url = message["image_url"]
if isinstance(message["image_url"], dict):
image_url = image_url["url"]
if image_url.startswith("data:image"):
prompt_text_strings.append(
"image_url: " + image_url[:30] + "... (truncated)"
)
else:
prompt_text_strings.append("image_url: " + image_url)
case _:
raise ValueError(
f"Unknown message type {repr(message['type'])} in the task goal."
)
full_prompt_txt = "\n".join(prompt_text_strings)
logger.info(full_prompt_txt)
# query OpenAI model
response = self.openai_client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": system_msgs},
{"role": "user", "content": user_msgs},
],
)
action = response.choices[0].message.content
self.action_history.append(action)
return action, {}
@dataclasses.dataclass
class DemoAgentArgs(AbstractAgentArgs):
"""
This class is meant to store the arguments that define the agent.
By isolating them in a dataclass, this ensures serialization without storing
internal states of the agent.
"""
model_name: str = "gpt-4o-mini"
chat_mode: bool = False
demo_mode: str = "off"
use_html: bool = False
use_axtree: bool = True
use_screenshot: bool = False
def make_agent(self):
return DemoAgent(
model_name=self.model_name,
chat_mode=self.chat_mode,
demo_mode=self.demo_mode,
use_html=self.use_html,
use_axtree=self.use_axtree,
use_screenshot=self.use_screenshot,
)
|