Spaces:
Sleeping
Sleeping
Fix Dockerfile & Gradio compatibility
Browse files- agent/local_llm.py +23 -48
agent/local_llm.py
CHANGED
@@ -8,19 +8,16 @@ except ImportError as e:
|
|
8 |
|
9 |
class LocalLLM:
|
10 |
def __init__(self):
|
11 |
-
# Use a
|
12 |
-
self.model_name = "
|
13 |
print(f"Initializing LocalLLM with model: {self.model_name}")
|
14 |
self.llm = self._create_llama_index_llm()
|
15 |
-
|
16 |
def _create_llama_index_llm(self):
|
17 |
-
"""Create LlamaIndex compatible LLM"""
|
18 |
try:
|
19 |
print("Loading tokenizer...")
|
20 |
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
21 |
-
|
22 |
-
tokenizer.pad_token = tokenizer.eos_token
|
23 |
-
|
24 |
print("Loading model...")
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
self.model_name,
|
@@ -28,79 +25,57 @@ class LocalLLM:
|
|
28 |
device_map="auto" if torch.cuda.is_available() else None,
|
29 |
low_cpu_mem_usage=True
|
30 |
)
|
31 |
-
|
32 |
-
print("Creating LlamaIndex LLM...")
|
33 |
-
# Fix the generate_kwargs to avoid conflicts
|
34 |
llm = HuggingFaceLLM(
|
35 |
model=model,
|
36 |
tokenizer=tokenizer,
|
37 |
-
|
38 |
-
generate_kwargs={
|
39 |
-
|
40 |
-
"temperature": 0.7,
|
41 |
-
"pad_token_id": tokenizer.eos_token_id
|
42 |
-
},
|
43 |
-
# Set these parameters at the LLM level instead
|
44 |
-
max_new_tokens=256,
|
45 |
device_map="auto" if torch.cuda.is_available() else None
|
46 |
)
|
47 |
-
|
48 |
-
print("LLM created successfully!")
|
49 |
return llm
|
50 |
-
|
51 |
except Exception as e:
|
52 |
-
print(f"Failed to load
|
53 |
-
# Fallback to even simpler model
|
54 |
return self._create_fallback_llm()
|
55 |
-
|
56 |
def _create_fallback_llm(self):
|
57 |
-
"
|
58 |
-
print("Using fallback model: gpt2")
|
59 |
model_name = "gpt2"
|
60 |
-
|
61 |
try:
|
62 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
63 |
tokenizer.pad_token = tokenizer.eos_token
|
64 |
-
|
65 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
66 |
-
|
67 |
return HuggingFaceLLM(
|
68 |
model=model,
|
69 |
tokenizer=tokenizer,
|
70 |
-
generate_kwargs={
|
71 |
-
"do_sample": True,
|
72 |
-
"temperature": 0.7,
|
73 |
-
"pad_token_id": tokenizer.eos_token_id
|
74 |
-
},
|
75 |
-
max_new_tokens=256
|
76 |
)
|
77 |
except Exception as e:
|
78 |
-
print(f"
|
79 |
-
# Return a mock LLM for testing
|
80 |
return self._create_mock_llm()
|
81 |
-
|
82 |
def _create_mock_llm(self):
|
83 |
-
"
|
84 |
-
print("Creating mock LLM for testing...")
|
85 |
-
|
86 |
class MockLLM:
|
87 |
def chat(self, messages, **kwargs):
|
88 |
-
# Simple mock response
|
89 |
class MockResponse:
|
90 |
def __init__(self, text):
|
91 |
self.message = type('obj', (object,), {'content': text})
|
92 |
-
|
93 |
-
return MockResponse("This is a mock response. The actual LLM failed to load.")
|
94 |
|
95 |
def complete(self, prompt, **kwargs):
|
96 |
class MockCompletion:
|
97 |
def __init__(self, text):
|
98 |
self.text = text
|
99 |
-
|
100 |
return MockCompletion("Mock completion response.")
|
101 |
|
102 |
return MockLLM()
|
103 |
-
|
104 |
def get_llm(self):
|
105 |
-
|
106 |
-
return self.llm
|
|
|
8 |
|
9 |
class LocalLLM:
|
10 |
def __init__(self):
|
11 |
+
# Use a chat-compatible model
|
12 |
+
self.model_name = "HuggingFaceH4/zephyr-7b-alpha"
|
13 |
print(f"Initializing LocalLLM with model: {self.model_name}")
|
14 |
self.llm = self._create_llama_index_llm()
|
15 |
+
|
16 |
def _create_llama_index_llm(self):
|
|
|
17 |
try:
|
18 |
print("Loading tokenizer...")
|
19 |
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
20 |
+
|
|
|
|
|
21 |
print("Loading model...")
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
self.model_name,
|
|
|
25 |
device_map="auto" if torch.cuda.is_available() else None,
|
26 |
low_cpu_mem_usage=True
|
27 |
)
|
28 |
+
|
29 |
+
print("Creating LlamaIndex-compatible LLM...")
|
|
|
30 |
llm = HuggingFaceLLM(
|
31 |
model=model,
|
32 |
tokenizer=tokenizer,
|
33 |
+
context_window=4096,
|
34 |
+
generate_kwargs={"temperature": 0.7, "max_new_tokens": 256},
|
35 |
+
tokenizer_kwargs={"use_fast": True},
|
|
|
|
|
|
|
|
|
|
|
36 |
device_map="auto" if torch.cuda.is_available() else None
|
37 |
)
|
38 |
+
print("✅ LLM created successfully!")
|
|
|
39 |
return llm
|
40 |
+
|
41 |
except Exception as e:
|
42 |
+
print(f"❌ Failed to load {self.model_name}: {e}")
|
|
|
43 |
return self._create_fallback_llm()
|
44 |
+
|
45 |
def _create_fallback_llm(self):
|
46 |
+
print("⚠️ Falling back to GPT2 model")
|
|
|
47 |
model_name = "gpt2"
|
|
|
48 |
try:
|
49 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
tokenizer.pad_token = tokenizer.eos_token
|
51 |
+
|
52 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
53 |
+
|
54 |
return HuggingFaceLLM(
|
55 |
model=model,
|
56 |
tokenizer=tokenizer,
|
57 |
+
generate_kwargs={"temperature": 0.7, "max_new_tokens": 256},
|
|
|
|
|
|
|
|
|
|
|
58 |
)
|
59 |
except Exception as e:
|
60 |
+
print(f"⚠️ Fallback model also failed: {e}")
|
|
|
61 |
return self._create_mock_llm()
|
62 |
+
|
63 |
def _create_mock_llm(self):
|
64 |
+
print("⚠️ Using mock LLM")
|
|
|
|
|
65 |
class MockLLM:
|
66 |
def chat(self, messages, **kwargs):
|
|
|
67 |
class MockResponse:
|
68 |
def __init__(self, text):
|
69 |
self.message = type('obj', (object,), {'content': text})
|
70 |
+
return MockResponse("Mock chat response.")
|
|
|
71 |
|
72 |
def complete(self, prompt, **kwargs):
|
73 |
class MockCompletion:
|
74 |
def __init__(self, text):
|
75 |
self.text = text
|
|
|
76 |
return MockCompletion("Mock completion response.")
|
77 |
|
78 |
return MockLLM()
|
79 |
+
|
80 |
def get_llm(self):
|
81 |
+
return self.llm
|
|