Spaces:
Sleeping
Sleeping
File size: 14,447 Bytes
580bcf5 e51386e 580bcf5 0fda38b e51386e f1c2e53 e51386e 0fda38b 72146a4 f1c2e53 bbe4b6b f1c2e53 bbe4b6b f1c2e53 0fda38b 72146a4 f1c2e53 72146a4 f1c2e53 0fda38b e51386e 8ac5ef4 f1c2e53 e51386e 0fda38b e51386e 72146a4 f1c2e53 e51386e f1c2e53 72146a4 f1c2e53 e51386e f1c2e53 2828102 f1c2e53 0fda38b 580bcf5 72146a4 e51386e 8ac5ef4 580bcf5 0fda38b e51386e 0fda38b 72146a4 f1c2e53 c2e1cfe 72146a4 c2e1cfe 72146a4 c2e1cfe 72146a4 c2e1cfe 72146a4 c2e1cfe e51386e 0fda38b e51386e 580bcf5 e51386e f1c2e53 580bcf5 e51386e 8ac5ef4 f1c2e53 0fda38b 580bcf5 e51386e 8ac5ef4 f1c2e53 8ac5ef4 580bcf5 e51386e f1c2e53 580bcf5 0fda38b 580bcf5 8ac5ef4 e51386e f1c2e53 580bcf5 e51386e 580bcf5 f1c2e53 580bcf5 e51386e f1c2e53 580bcf5 e51386e 580bcf5 f1c2e53 0fda38b 580bcf5 e51386e 580bcf5 e51386e f1c2e53 e51386e f1c2e53 e51386e 580bcf5 8ac5ef4 580bcf5 e51386e f1c2e53 580bcf5 f1c2e53 0fda38b 580bcf5 8ac5ef4 580bcf5 8ac5ef4 f1c2e53 0fda38b e51386e 72146a4 e51386e 0fda38b 72146a4 0fda38b e51386e 580bcf5 e51386e 580bcf5 e51386e 580bcf5 e51386e 580bcf5 e51386e 580bcf5 e51386e 580bcf5 e51386e 580bcf5 0fda38b e51386e 0fda38b e51386e 580bcf5 e51386e 580bcf5 e51386e 580bcf5 e51386e f1c2e53 8ac5ef4 580bcf5 f1c2e53 bbe4b6b f1c2e53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import os
import sys
import json
import traceback
from typing import List, Dict
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
import gradio as gr
# --- Environment variable setup to fix permission issues ---
def setup_environment():
env_vars = {
"NLTK_DATA": "/tmp/nltk_data",
"MPLCONFIGDIR": "/tmp/matplotlib_cache",
"HF_HOME": "/tmp/huggingface_cache",
"TORCH_HOME": "/tmp/torch_cache",
"TRANSFORMERS_CACHE": "/tmp/huggingface_cache"
}
for var, path in env_vars.items():
os.environ[var] = path
os.makedirs(path, exist_ok=True)
for var, path in env_vars.items():
os.environ[var] = path
# Create directory if it doesn't exist
try:
os.makedirs(path, exist_ok=True)
print(f"β
Created/verified directory: {path}")
except PermissionError:
print(f"β οΈ Permission denied for {path}, using /tmp fallback")
fallback_path = f"/tmp/{var.lower()}"
os.environ[var] = fallback_path
os.makedirs(fallback_path, exist_ok=True)
except Exception as e:
print(f"β Error setting up {var}: {e}")
# Setup environment first
setup_environment()
# Import nltk AFTER setting environment variables
try:
import nltk
# Download required NLTK data upfront
nltk.download('punkt', download_dir=os.environ["NLTK_DATA"], quiet=True)
nltk.download('stopwords', download_dir=os.environ["NLTK_DATA"], quiet=True)
print("β
NLTK data downloaded successfully")
except Exception as e:
print(f"β οΈ NLTK setup warning: {e}")
# Add current directory to path for local imports
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Import dependencies with better error handling
try:
from utils.gaia_api import GaiaAPI
print("β
GaiaAPI imported successfully")
except ImportError as e:
print(f"β οΈ Failed to import GaiaAPI: {e}")
# Create a fallback GaiaAPI
class GaiaAPI:
@classmethod
def get_questions(cls):
return [{"task_id": "fallback", "question": "What is 2+2?"}]
@classmethod
def get_random_question(cls):
return {"task_id": "fallback", "question": "What is 2+2?"}
@classmethod
def submit_answers(cls, username, code_url, answers):
return {"error": "GaiaAPI not available", "score": 0}
# Initialize global agent state
AGENT_READY = False
agent = None
initialization_error = None
agent_info = {}
def initialize_agent():
"""Initialize the LlamaIndex agent with comprehensive error handling"""
global agent, AGENT_READY, initialization_error, agent_info
try:
print("π Starting agent initialization...")
# Import agent-related modules
print("π¦ Importing modules...")
from agent.local_llm import LocalLLM
from agent.tools import gaia_tools
from llama_index.core.agent import ReActAgent
from llama_index.core.memory import ChatMemoryBuffer
agent_info["modules_imported"] = True
print("β
All modules imported successfully!")
print("π€ Initializing Local LLM...")
local_llm = LocalLLM()
llm = local_llm.get_llm()
agent_info["llm_type"] = llm.__class__.__name__
print("π§ Creating ReAct Agent...")
memory = ChatMemoryBuffer.from_defaults(token_limit=2000)
# Check if we have a proper LLM or mock
if hasattr(llm, 'chat') and llm.__class__.__name__ != 'MockLLM':
agent = ReActAgent.from_tools(
tools=gaia_tools,
llm=llm,
memory=memory,
verbose=True,
max_iterations=3
)
agent_info["agent_type"] = "ReActAgent"
print("β
ReAct Agent initialized successfully!")
else:
agent = llm # Use the mock LLM directly
agent_info["agent_type"] = "MockLLM"
print("β οΈ Using mock mode - agent partially ready")
agent_info["tools_count"] = len(gaia_tools) if 'gaia_tools' in locals() else 0
AGENT_READY = True
print("π Agent initialization complete!")
except Exception as e:
error_msg = f"Failed to initialize agent: {str(e)}"
print(f"β {error_msg}")
traceback.print_exc()
AGENT_READY = False
agent = None
initialization_error = error_msg
agent_info["error"] = error_msg
# Initialize agent
initialize_agent()
def process_single_question(question_text: str) -> str:
"""Process a single GAIA question through the agent"""
if not AGENT_READY:
error_msg = "β Agent not ready. "
if initialization_error:
error_msg += f"Error: {initialization_error}"
return error_msg
if not question_text.strip():
return "β Please enter a question."
try:
enhanced_prompt = f"""
Answer the following question directly and concisely. Do not include "FINAL ANSWER" or any other prefixes in your response. Just provide the answer.
Question: {question_text}
"""
print(f"π€ Processing question: {question_text[:50]}...")
# FIXED: Use .complete() instead of .chat() to avoid chat template errors
if hasattr(agent, 'query'):
response = agent.query(enhanced_prompt)
elif hasattr(agent, 'complete'):
# Use complete() method for models without chat templates
response = agent.complete(enhanced_prompt)
answer = response.text if hasattr(response, 'text') else str(response)
elif hasattr(agent, 'chat'):
# Only use chat if it's the MockLLM or a proper chat model
try:
response = agent.chat([{"role": "user", "content": enhanced_prompt}])
answer = response.message.content if hasattr(response, 'message') else str(response)
except Exception as chat_error:
# Fallback to complete if chat fails
print(f"β οΈ Chat method failed, trying complete: {chat_error}")
if hasattr(agent, 'complete'):
response = agent.complete(enhanced_prompt)
answer = response.text if hasattr(response, 'text') else str(response)
else:
raise chat_error
else:
answer = "Mock response: I would analyze this question and provide an answer."
# Clean up the answer if it wasn't already processed above
if 'answer' not in locals():
answer = str(response).strip()
# Remove common prefixes from the answer
for prefix in ["FINAL ANSWER:", "Answer:", "The answer is:", "Final answer:"]:
if answer.startswith(prefix):
answer = answer[len(prefix):].strip()
print(f"β
Generated answer: {answer[:50]}...")
return answer
except Exception as e:
error_msg = f"β Error processing question: {str(e)}"
print(error_msg)
return error_msg
def process_all_questions() -> str:
"""Process all GAIA questions and prepare answers for submission"""
if not AGENT_READY:
return "β Agent not ready."
try:
print("π₯ Fetching all GAIA questions...")
questions = GaiaAPI.get_questions()
processed_answers = []
print(f"π Processing {len(questions)} questions...")
for i, question in enumerate(questions):
print(f"Processing question {i + 1}/{len(questions)}: {question['task_id']}")
answer = process_single_question(question['question'])
processed_answers.append({
"task_id": question['task_id'],
"submitted_answer": answer
})
# Save answers to file
output_file = "/app/gaia_answers.json"
with open(output_file, "w") as f:
json.dump(processed_answers, f, indent=2)
summary = f"β
Processed {len(processed_answers)} questions.\n"
summary += f"πΎ Answers saved to {output_file}\n"
summary += "π First 3 answers:\n"
for ans in processed_answers[:3]:
summary += f"- {ans['task_id']}: {ans['submitted_answer'][:50]}...\n"
print(summary)
return summary
except Exception as e:
error_msg = f"β Error processing questions: {str(e)}"
print(error_msg)
traceback.print_exc()
return error_msg
def submit_to_gaia(username: str, code_url: str) -> str:
"""Submit answers to GAIA benchmark"""
if not AGENT_READY:
return "β Agent not ready."
if not username or not code_url:
return "β Please provide both username and code URL."
try:
answers_file = "/app/gaia_answers.json"
with open(answers_file, "r") as f:
answers = json.load(f)
print(f"π€ Submitting {len(answers)} answers...")
except FileNotFoundError:
return "β No processed answers found. Please process them first."
try:
result = GaiaAPI.submit_answers(username, code_url, answers)
if "error" in result:
return f"β Submission failed: {result['error']}"
score = result.get("score", "Unknown")
success_msg = f"β
Submission successful!\nπ Score: {score}"
print(success_msg)
return success_msg
except Exception as e:
error_msg = f"β Submission error: {str(e)}"
print(error_msg)
return error_msg
def get_sample_question() -> str:
"""Load a sample question for testing"""
try:
question = GaiaAPI.get_random_question()
return question['question']
except Exception as e:
return f"Error loading sample question: {str(e)}"
def get_system_status() -> str:
"""Get detailed system status for debugging"""
status = "π System Status:\n\n"
# Agent status
status += f"π€ Agent Ready: {'β
Yes' if AGENT_READY else 'β No'}\n"
if initialization_error:
status += f"β Error: {initialization_error}\n"
# Agent info
status += f"π§ LLM Type: {agent_info.get('llm_type', 'Unknown')}\n"
status += f"π§ Agent Type: {agent_info.get('agent_type', 'Unknown')}\n"
status += f"π οΈ Tools Count: {agent_info.get('tools_count', 0)}\n"
# Environment
status += "\nπ Environment Variables:\n"
for var in ["NLTK_DATA", "HF_HOME", "MPLCONFIGDIR", "TORCH_HOME"]:
path = os.environ.get(var, 'Not set')
exists = "β
" if os.path.exists(path) else "β"
status += f" {var}: {path} {exists}\n"
# Directory permissions
status += "\nπ Directory Status:\n"
for path in ["/app", "/tmp"]:
try:
writable = os.access(path, os.W_OK)
status += f" {path}: {'β
Writable' if writable else 'β Not writable'}\n"
except:
status += f" {path}: β Error checking\n"
return status
# ---------- Gradio UI ----------
with gr.Blocks(title="π¦ GAIA LlamaIndex Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# π¦ GAIA Benchmark Agent with LlamaIndex
This agent uses LlamaIndex with a local LLM to tackle GAIA benchmark questions.
**Status:** {"β
Ready" if AGENT_READY else "β Not Ready"}
{f"**Error:** {initialization_error}" if initialization_error else ""}
""")
with gr.Tab("π¬ Test Single Question"):
gr.Markdown("Test the agent with individual questions")
with gr.Row():
with gr.Column():
question_input = gr.Textbox(
label="Question",
placeholder="Enter a GAIA question or click 'Load Sample'",
lines=3
)
with gr.Row():
sample_btn = gr.Button("π² Load Sample Question")
process_btn = gr.Button("π Process Question", variant="primary")
with gr.Column():
answer_output = gr.Textbox(
label="Agent Answer",
lines=5,
interactive=False
)
sample_btn.click(get_sample_question, outputs=question_input)
process_btn.click(process_single_question, inputs=question_input, outputs=answer_output)
with gr.Tab("π Full Evaluation"):
gr.Markdown("Process all GAIA questions and prepare for submission")
process_all_btn = gr.Button("π Process All Questions", variant="primary")
processing_output = gr.Textbox(label="Processing Status", lines=10, interactive=False)
process_all_btn.click(process_all_questions, outputs=processing_output)
with gr.Tab("π Submit to GAIA"):
gr.Markdown("""
Submit your processed answers to the GAIA benchmark for official scoring.
**Requirements:**
1. Your Hugging Face username
2. Link to your Space code (e.g., https://huggingface.co/spaces/your-username/gaia-agent)
""")
with gr.Row():
with gr.Column():
username_input = gr.Textbox(label="HF Username", placeholder="your-username")
code_url_input = gr.Textbox(label="Space Code URL", placeholder="https://huggingface.co/spaces/your-username/gaia-agent")
submit_btn = gr.Button("π― Submit to GAIA", variant="primary")
with gr.Column():
submission_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
submit_btn.click(submit_to_gaia, inputs=[username_input, code_url_input], outputs=submission_output)
with gr.Tab("βΉοΈ System Status"):
gr.Markdown("## System Information and Debugging")
refresh_btn = gr.Button("π Refresh Status")
status_output = gr.Textbox(label="System Status", lines=20, interactive=False)
# Load initial status
demo.load(get_system_status, outputs=status_output)
refresh_btn.click(get_system_status, outputs=status_output)
if __name__ == "__main__":
print("π Starting Gradio interface...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |