# app.py from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core.agent import ReActAgent from llama_index.core.tools import FunctionTool from transformers import AutoTokenizer import os import gradio as gr import requests import pandas as pd import traceback # Import real tool dependencies try: from duckduckgo_search import DDGS except ImportError: print("Warning: duckduckgo_search not installed. Web search will be limited.") DDGS = None try: from sympy import sympify from sympy.core.sympify import SympifyError except ImportError: print("Warning: sympy not installed. Math calculator will be limited.") sympify = None SympifyError = Exception # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Advanced Agent Definition --- class SmartAgent: def __init__(self): print("Initializing Local LLM Agent...") # Initialize Zephyr-7B model self.llm = HuggingFaceLLM( model_name="HuggingFaceH4/zephyr-7b-beta", tokenizer_name="HuggingFaceH4/zephyr-7b-beta", context_window=2048, max_new_tokens=256, generate_kwargs={"temperature": 0.7, "do_sample": True}, device_map="auto" ) # Define tools with real implementations self.tools = [ FunctionTool.from_defaults( fn=self.web_search, name="web_search", description="Searches the web for current information using DuckDuckGo when questions require up-to-date knowledge" ), FunctionTool.from_defaults( fn=self.math_calculator, name="math_calculator", description="Performs mathematical calculations and symbolic math using SymPy when questions involve numbers or equations" ) ] # Create ReAct agent with tools self.agent = ReActAgent.from_tools( tools=self.tools, llm=self.llm, verbose=True ) print("Local LLM Agent initialized successfully.") def web_search(self, query: str) -> str: """Real web search using DuckDuckGo""" print(f"Web search triggered for: {query[:50]}...") if not DDGS: return "Web search unavailable - duckduckgo_search not installed" try: with DDGS() as ddgs: results = list(ddgs.text(query, max_results=3)) if results: formatted_results = [] for i, r in enumerate(results, 1): title = r.get('title', 'No title') body = r.get('body', 'No description')[:200] url = r.get('href', '') formatted_results.append(f"{i}. {title}\n{body}...\nSource: {url}") return "\n\n".join(formatted_results) else: return "No search results found for the query." except Exception as e: print(f"Web search error: {e}") return f"Error during web search: {str(e)}" def math_calculator(self, expression: str) -> str: """Safe math evaluation using SymPy""" print(f"Math calculation triggered for: {expression}") if not sympify: # Fallback to basic eval with safety checks try: # Only allow basic math operations allowed_chars = set('0123456789+-*/().^ ') if not all(c in allowed_chars for c in expression.replace(' ', '')): return "Error: Only basic math operations are allowed" result = eval(expression.replace('^', '**')) return str(result) except Exception as e: return f"Error: Could not evaluate the mathematical expression - {str(e)}" try: # Use SymPy for safe evaluation result = sympify(expression).evalf() return str(result) except SympifyError as e: return f"Error: Could not parse the mathematical expression - {str(e)}" except Exception as e: return f"Error: Calculation failed - {str(e)}" def __call__(self, question: str) -> str: print(f"Processing question (first 50 chars): {question[:50]}...") try: response = self.agent.query(question) return str(response) except Exception as e: print(f"Agent error: {str(e)}") print(f"Full traceback: {traceback.format_exc()}") return f"Error processing question: {str(e)}" # --- Submission Logic --- def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the agent on them, submits all answers, and displays the results. """ space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # Instantiate Agent try: agent = SmartAgent() except Exception as e: print(f"Error instantiating agent: {e}") print(f"Full traceback: {traceback.format_exc()}") return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(f"Agent code URL: {agent_code}") # Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # Run Agent on all questions results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for i, item in enumerate(questions_data, 1): task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue print(f"Processing question {i}/{len(questions_data)}: {task_id}") try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer }) print(f"✅ Completed question {i}: {task_id}") except Exception as e: print(f"❌ Error running agent on task {task_id}: {e}") error_answer = f"AGENT ERROR: {str(e)}" answers_payload.append({"task_id": task_id, "submitted_answer": error_answer}) results_log.append({ "Task ID": task_id, "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, "Submitted Answer": error_answer }) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # Prepare submission submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } status_update = f"Agent finished processing. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # Submit answers print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"🎉 Submission Successful!\n\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("✅ Submission successful!") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"❌ Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "❌ Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"❌ Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"❌ An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Gradio UI --- with gr.Blocks(title="Local LLM Agent Evaluation") as demo: gr.Markdown("# 🤖 Local LLM Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. 🔐 Log in to your Hugging Face account using the button below 2. 🚀 Click 'Run Evaluation & Submit All Answers' 3. âŗ Wait for the local LLM (Zephyr-7B) to process all questions 4. 📊 View your results and submission status **Features:** - 🔍 Real web search using DuckDuckGo - 🧮 Advanced math calculations with SymPy - 🧠 Powered by HuggingFace Zephyr-7B model """ ) with gr.Row(): gr.LoginButton() with gr.Row(): run_button = gr.Button( "🚀 Run Evaluation & Submit All Answers", variant="primary", size="lg" ) status_output = gr.Textbox( label="📋 Run Status / Submission Result", lines=8, interactive=False, placeholder="Click the button above to start the evaluation..." ) results_table = gr.DataFrame( label="📊 Questions and Agent Answers", wrap=True, interactive=False ) # Wire up the button run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "="*60) print("🚀 Application Startup at", pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S")) print("="*60) space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}") else: print("â„šī¸ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("â„šī¸ SPACE_ID environment variable not found (running locally?).") print("-" * 60) print("đŸŽ¯ Launching Gradio Interface for Local LLM Agent Evaluation...") # Launch without share=True for Hugging Face Spaces demo.launch( server_name="0.0.0.0", server_port=7860, show_error=True )