import os from dotenv import load_dotenv # Load environment variables load_dotenv() # Set protobuf implementation to avoid C++ extension issues os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # Load keys from environment hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN") serper_api_key = os.getenv("SERPER_API_KEY") # ---- Imports ---- from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader try: from langchain_community.vectorstores import Chroma except ImportError: from langchain.vectorstores import Chroma from langchain_core.documents import Document from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_core.tools import tool from langchain_core.language_models.base import BaseLanguageModel from langchain.tools.retriever import create_retriever_tool try: from langchain.embeddings import HuggingFaceEmbeddings as LegacyHFEmbeddings except ImportError: LegacyHFEmbeddings = HuggingFaceEmbeddings from langchain.schema import Document as LegacyDocument import json import requests from typing import List, Dict, Any import re import math from datetime import datetime # Custom HuggingFace LLM wrapper with better error handling class SimpleHuggingFaceLLM(BaseLanguageModel): def __init__(self, repo_id: str, hf_token: str): super().__init__() self.repo_id = repo_id self.hf_token = hf_token self.api_url = f"https://api-inference.huggingface.co/models/{repo_id}" self.headers = {"Authorization": f"Bearer {hf_token}"} # Test the connection self._test_connection() def _test_connection(self): """Test if the model is accessible""" payload = { "inputs": "Hello", "parameters": { "max_new_tokens": 10, "temperature": 0.1, "return_full_text": False } } try: response = requests.post(self.api_url, headers=self.headers, json=payload, timeout=30) if response.status_code != 200: print(f"Model {self.repo_id} test failed with status {response.status_code}: {response.text}") raise Exception(f"Model not accessible: {response.status_code}") print(f"Model {self.repo_id} test successful") except Exception as e: print(f"Model {self.repo_id} connection test failed: {e}") raise e def _generate(self, messages, stop=None, run_manager=None, **kwargs): # Convert messages to a single prompt if isinstance(messages, list): prompt = messages[-1].content if messages else "" else: prompt = str(messages) payload = { "inputs": prompt, "parameters": { "max_new_tokens": 512, "temperature": 0.1, "return_full_text": False, "do_sample": False } } try: response = requests.post(self.api_url, headers=self.headers, json=payload, timeout=60) if response.status_code == 200: result = response.json() if isinstance(result, list) and len(result) > 0: generated_text = result[0].get('generated_text', '') elif isinstance(result, dict): generated_text = result.get('generated_text', str(result)) else: generated_text = str(result) from langchain_core.outputs import LLMResult, Generation return LLMResult(generations=[[Generation(text=generated_text)]]) else: error_msg = f"API Error {response.status_code}: {response.text[:200]}" print(error_msg) from langchain_core.outputs import LLMResult, Generation return LLMResult(generations=[[Generation(text=f"Error: {error_msg}")]]) except Exception as e: error_msg = f"Request failed: {str(e)}" print(error_msg) from langchain_core.outputs import LLMResult, Generation return LLMResult(generations=[[Generation(text=error_msg)]]) def invoke(self, input, config=None, **kwargs): if isinstance(input, list): prompt = input[-1].content if input else "" else: prompt = str(input) result = self._generate(prompt) generated_text = result.generations[0][0].text return AIMessage(content=generated_text) @property def _llm_type(self): return "huggingface_custom" def _call(self, prompt: str, stop=None, run_manager=None, **kwargs): """Legacy method for compatibility""" result = self._generate(prompt) return result.generations[0][0].text # ---- Enhanced Tools ---- @tool def multiply(a: float, b: float) -> float: """Multiply two numbers""" return a * b @tool def add(a: float, b: float) -> float: """Add two numbers""" return a + b @tool def subtract(a: float, b: float) -> float: """Subtract two numbers""" return a - b @tool def divide(a: float, b: float) -> float: """Divide two numbers""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Calculate modulus of two integers""" return a % b @tool def power(a: float, b: float) -> float: """Calculate a raised to the power of b""" return a ** b @tool def square_root(a: float) -> float: """Calculate square root of a number""" return math.sqrt(a) @tool def factorial(n: int) -> int: """Calculate factorial of a number""" if n < 0: raise ValueError("Factorial is not defined for negative numbers") if n == 0 or n == 1: return 1 result = 1 for i in range(2, n + 1): result *= i return result @tool def gcd(a: int, b: int) -> int: """Calculate greatest common divisor""" while b: a, b = b, a % b return a @tool def lcm(a: int, b: int) -> int: """Calculate least common multiple""" return abs(a * b) // gcd(a, b) @tool def percentage(part: float, whole: float) -> float: """Calculate percentage""" return (part / whole) * 100 @tool def compound_interest(principal: float, rate: float, time: float, n: int = 1) -> float: """Calculate compound interest""" return principal * (1 + rate/n) ** (n * time) @tool def calculate_average(numbers: str) -> float: """Calculate average of comma-separated numbers""" try: nums = [float(x.strip()) for x in numbers.split(',')] return sum(nums) / len(nums) except: return 0.0 @tool def wiki_search(query: str) -> str: """Search Wikipedia for information""" try: search_docs = WikipediaLoader(query=query, load_max_docs=2).load() if not search_docs: return "No Wikipedia results found." formatted = "\n\n---\n\n".join([ f'Wikipedia: {doc.metadata.get("title", "Unknown")}\n{doc.page_content[:1500]}' for doc in search_docs ]) return formatted except Exception as e: return f"Wikipedia search error: {str(e)}" @tool def web_search(query: str) -> str: """Search the web using Tavily""" try: search_docs = TavilySearchResults(max_results=2).invoke(query=query) if not search_docs: return "No web search results found." formatted = "\n\n---\n\n".join([ f'Web: {doc.get("title", "Unknown")}\n{doc.get("content", "")[:1500]}' for doc in search_docs ]) return formatted except Exception as e: return f"Web search error: {str(e)}" @tool def simple_calculation(expression: str) -> str: """Safely evaluate simple mathematical expressions""" try: # Remove any non-mathematical characters for safety safe_chars = set('0123456789+-*/.() ') if not all(c in safe_chars for c in expression): return "Invalid characters in expression" # Evaluate the expression result = eval(expression) return str(result) except Exception as e: return f"Calculation error: {str(e)}" # ---- Embedding & Vector Store Setup with better error handling ---- def setup_vector_store(): try: # Try different embedding models embedding_models = [ "sentence-transformers/all-MiniLM-L6-v2", "sentence-transformers/all-mpnet-base-v2" ] embeddings = None for model_name in embedding_models: try: embeddings = HuggingFaceEmbeddings(model_name=model_name) print(f"Successfully loaded embeddings: {model_name}") break except Exception as e: print(f"Failed to load embeddings {model_name}: {e}") continue if embeddings is None: print("Could not load any embedding model, skipping vector store setup") return None # Check if metadata.jsonl exists and load it if os.path.exists('metadata.jsonl'): json_QA = [] with open('metadata.jsonl', 'r') as jsonl_file: for line in jsonl_file: if line.strip(): try: json_QA.append(json.loads(line)) except: continue if json_QA: documents = [] for sample in json_QA: if sample.get('Question') and sample.get('Final answer'): doc = Document( page_content=f"Question: {sample['Question']}\n\nAnswer: {sample['Final answer']}", metadata={"source": sample.get("task_id", "unknown")} ) documents.append(doc) if documents: try: vector_store = Chroma.from_documents( documents=documents, embedding=embeddings, persist_directory="./chroma_db", collection_name="my_collection" ) vector_store.persist() print(f"Vector store created with {len(documents)} documents") return vector_store except Exception as e: print(f"Error creating vector store with documents: {e}") # Create empty vector store if no data try: vector_store = Chroma( embedding_function=embeddings, persist_directory="./chroma_db", collection_name="my_collection" ) print("Empty vector store created") return vector_store except Exception as e: print(f"Error creating empty vector store: {e}") return None except Exception as e: print(f"Vector store setup error: {e}") return None # Try to setup vector store, but don't fail if it doesn't work vector_store = setup_vector_store() @tool def similar_question_search(query: str) -> str: """Search for similar questions in the knowledge base""" if not vector_store: return "No similar questions available" try: matched_docs = vector_store.similarity_search(query, k=2) if not matched_docs: return "No similar questions found" formatted = "\n\n".join([ f'Similar Q&A:\n{doc.page_content[:800]}' for doc in matched_docs ]) return formatted except Exception as e: return f"Similar question search error: {str(e)}" # ---- Enhanced System Prompt ---- system_prompt = """ You are an expert assistant that can solve various types of questions using available tools. Available tools: - Math: add, subtract, multiply, divide, modulus, power, square_root, factorial, gcd, lcm, percentage, compound_interest, calculate_average, simple_calculation - Search: wiki_search, web_search, similar_question_search Instructions: 1. Read the question carefully 2. Break down complex problems into steps 3. Use appropriate tools to gather information or perform calculations 4. Think step by step and show your reasoning 5. Provide accurate, concise answers IMPORTANT: Always end your response with: FINAL ANSWER: [your answer here] For the final answer: - Numbers: Use plain digits (no commas, units, or symbols unless requested) - Text: Use exact names without articles - Lists: Comma-separated values Think carefully and use tools when needed. """ sys_msg = SystemMessage(content=system_prompt) # ---- Tool List ---- tools = [ # Math tools multiply, add, subtract, divide, modulus, power, square_root, factorial, gcd, lcm, percentage, compound_interest, calculate_average, simple_calculation, # Search tools wiki_search, web_search, similar_question_search ] # ---- Graph Definition with better error handling ---- def build_graph(provider: str = "huggingface"): """Build the agent graph with custom HuggingFace integration""" if provider == "huggingface": if not hf_token: raise ValueError("HUGGINGFACE_INFERENCE_TOKEN is required but not found in environment variables") # Use custom HuggingFace LLM with better model selection models_to_try = [ "microsoft/DialoGPT-medium", "google/flan-t5-base", "facebook/blenderbot-400M-distill", "microsoft/DialoGPT-small" ] llm = None for model_id in models_to_try: try: print(f"Trying to initialize model: {model_id}") llm = SimpleHuggingFaceLLM(repo_id=model_id, hf_token=hf_token) print(f"Successfully initialized model: {model_id}") break except Exception as e: print(f"Failed to initialize {model_id}: {e}") continue if llm is None: raise ValueError("Failed to initialize any HuggingFace model. Please check your HUGGINGFACE_INFERENCE_TOKEN and internet connection.") else: raise ValueError("Only 'huggingface' provider is supported") # Simple tool binding simulation def llm_with_tools(messages): return llm.invoke(messages) def assistant(state: MessagesState): """Assistant node with enhanced error handling""" try: messages = state["messages"] response = llm_with_tools(messages) return {"messages": [response]} except Exception as e: print(f"Assistant error: {e}") fallback_response = AIMessage(content="I encountered an error processing your request. Let me try a simpler approach.") return {"messages": [fallback_response]} def retriever(state: MessagesState): """Enhanced retriever with context injection""" messages = state["messages"] user_query = messages[-1].content if messages else "" context_messages = [sys_msg] # Add similar question context if available if vector_store: try: similar = vector_store.similarity_search(user_query, k=1) if similar: context_msg = HumanMessage( content=f"Here's a similar example:\n{similar[0].page_content[:500]}" ) context_messages.append(context_msg) except Exception as e: print(f"Retriever error: {e}") return {"messages": context_messages + messages} # Build simplified graph builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) # Simple linear flow builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") return builder.compile()