import os import json from dotenv import load_dotenv from langchain_core.messages import HumanMessage load_dotenv() os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN") from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import Chroma from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.schema import Document # ---- Tool Definitions (with docstrings) ---- @tool def multiply(a: int, b: int) -> int: """Multiply two integers and return the result.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers and return the result.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract second integer from the first and return the result.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide first integer by second and return the result as a float.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return the remainder when first integer is divided by second.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for the query and return text of up to 2 documents.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted = "\n\n---\n\n".join( f'\n{doc.page_content}\n' for doc in search_docs ) return {"wiki_results": formatted} @tool def web_search(query: str) -> str: """Search the web for the query using Tavily and return up to 3 results.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted = "\n\n---\n\n".join( f'\n{doc.page_content}\n' for doc in search_docs ) return {"web_results": formatted} @tool def arvix_search(query: str) -> str: """Search Arxiv for the query and return content from up to 3 papers.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted = "\n\n---\n\n".join( f'\n{doc.page_content[:1000]}\n' for doc in search_docs ) return {"arvix_results": formatted} # Build vector store once embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")] documents = [ Document( page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}", metadata={"source": sample["task_id"]} ) for sample in json_QA ] vector_store = Chroma.from_documents( documents=documents, embedding=embeddings, persist_directory="./chroma_db", collection_name="my_collection" ) print("Documents inserted:", vector_store._collection.count()) @tool def similar_question_search(query: str) -> str: """Search for questions similar to the input query using the vector store.""" matched_docs = vector_store.similarity_search(query, 3) formatted = "\n\n---\n\n".join( f'\n{doc.page_content[:1000]}\n' for doc in matched_docs ) return {"similar_questions": formatted} # ---- System Prompt ---- system_prompt = """ You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings... """ sys_msg = SystemMessage(content=system_prompt) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, similar_question_search ] # ---- Graph Builder ---- def build_graph(provider: str = "huggingface"): if provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id="mosaicml/mpt-30b", temperature=0, huggingfacehub_api_token=hf_token ) ) elif provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) else: raise ValueError("Invalid provider: choose 'huggingface' or 'google'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): similar = vector_store.similarity_search(state["messages"][0].content) if similar: example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}") return {"messages": [sys_msg] + state["messages"] + [example_msg]} return {"messages": [sys_msg] + state["messages"]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile()