Spaces:
Runtime error
Runtime error
fixing
Browse files- app.py +226 -247
- requirements.txt +2 -2
app.py
CHANGED
@@ -5,8 +5,7 @@ import pandas as pd
|
|
5 |
import json
|
6 |
import re
|
7 |
import time
|
8 |
-
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel
|
9 |
-
from smolagents.tools import Tool
|
10 |
from typing import Dict, Any, List
|
11 |
import base64
|
12 |
from io import BytesIO
|
@@ -18,237 +17,222 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
18 |
|
19 |
# --- Custom Tools ---
|
20 |
|
21 |
-
|
22 |
-
name = "serper_search"
|
23 |
-
description = "Search the web using Serper API for current information and specific queries"
|
24 |
-
inputs = {
|
25 |
-
"query": {
|
26 |
-
"type": "string",
|
27 |
-
"description": "The search query"
|
28 |
-
}
|
29 |
-
}
|
30 |
-
output_type = "string"
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
}
|
46 |
-
response = requests.
|
47 |
-
response.raise_for_status()
|
48 |
-
|
49 |
data = response.json()
|
50 |
-
results = []
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
results.append(f"Title: {item.get('title', '')}\nSnippet: {item.get('snippet', '')}\nURL: {item.get('link', '')}\n")
|
56 |
-
|
57 |
-
# Add knowledge graph if available
|
58 |
-
if 'knowledgeGraph' in data:
|
59 |
-
kg = data['knowledgeGraph']
|
60 |
-
results.insert(0, f"Knowledge Graph: {kg.get('title', '')} - {kg.get('description', '')}\n")
|
61 |
|
62 |
-
return "\n".join(results) if results else "No results found"
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
class WikipediaSearchTool(Tool):
|
68 |
-
name = "wikipedia_search"
|
69 |
-
description = "Search Wikipedia for detailed information on topics"
|
70 |
-
inputs = {
|
71 |
-
"query": {
|
72 |
-
"type": "string",
|
73 |
-
"description": "The Wikipedia search query"
|
74 |
-
}
|
75 |
-
}
|
76 |
-
output_type = "string"
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
search_api = "https://en.wikipedia.org/w/api.php"
|
90 |
-
params = {
|
91 |
-
"action": "query",
|
92 |
-
"format": "json",
|
93 |
-
"list": "search",
|
94 |
-
"srsearch": query,
|
95 |
-
"srlimit": 3
|
96 |
-
}
|
97 |
-
response = requests.get(search_api, params=params, timeout=15)
|
98 |
-
data = response.json()
|
99 |
-
|
100 |
-
results = []
|
101 |
-
for item in data.get('query', {}).get('search', []):
|
102 |
-
results.append(f"Title: {item['title']}\nSnippet: {item['snippet']}")
|
103 |
-
|
104 |
-
return "\n\n".join(results) if results else "No Wikipedia results found"
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
output_type = "string"
|
119 |
-
|
120 |
-
def forward(self, url: str) -> str:
|
121 |
-
try:
|
122 |
-
# Extract video ID
|
123 |
-
video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', url)
|
124 |
-
if not video_id_match:
|
125 |
-
return "Invalid YouTube URL"
|
126 |
|
127 |
-
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
result = f"Title: {data.get('title', '')}\nAuthor: {data.get('author_name', '')}\n"
|
136 |
-
|
137 |
-
# Try to get additional info by scraping (basic)
|
138 |
-
try:
|
139 |
-
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
140 |
-
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
|
141 |
-
page_response = requests.get(video_url, headers=headers, timeout=15)
|
142 |
-
|
143 |
-
if page_response.status_code == 200:
|
144 |
-
content = page_response.text
|
145 |
-
# Extract description from meta tags
|
146 |
-
desc_match = re.search(r'"description":{"simpleText":"([^"]+)"', content)
|
147 |
-
if desc_match:
|
148 |
-
result += f"Description: {desc_match.group(1)}\n"
|
149 |
-
|
150 |
-
except:
|
151 |
-
pass
|
152 |
-
|
153 |
-
return result
|
154 |
-
else:
|
155 |
-
return "Could not retrieve video information"
|
156 |
-
|
157 |
-
except Exception as e:
|
158 |
-
return f"YouTube analysis error: {str(e)}"
|
159 |
-
|
160 |
-
class TextProcessorTool(Tool):
|
161 |
-
name = "text_processor"
|
162 |
-
description = "Process text for various operations like reversing, parsing, and analyzing"
|
163 |
-
inputs = {
|
164 |
-
"text": {
|
165 |
-
"type": "string",
|
166 |
-
"description": "Text to process"
|
167 |
-
},
|
168 |
-
"operation": {
|
169 |
-
"type": "string",
|
170 |
-
"description": "Operation to perform: reverse, parse, analyze"
|
171 |
-
}
|
172 |
-
}
|
173 |
-
output_type = "string"
|
174 |
-
|
175 |
-
def forward(self, text: str, operation: str = "analyze") -> str:
|
176 |
-
try:
|
177 |
-
if operation == "reverse":
|
178 |
-
return text[::-1]
|
179 |
-
elif operation == "parse":
|
180 |
-
# Extract meaningful information
|
181 |
-
words = text.split()
|
182 |
-
return f"Word count: {len(words)}\nFirst word: {words[0] if words else 'None'}\nLast word: {words[-1] if words else 'None'}"
|
183 |
-
else:
|
184 |
-
# General analysis
|
185 |
-
return f"Text length: {len(text)}\nWord count: {len(text.split())}\nText: {text[:200]}..."
|
186 |
-
except Exception as e:
|
187 |
-
return f"Text processing error: {str(e)}"
|
188 |
-
|
189 |
-
class MathSolverTool(Tool):
|
190 |
-
name = "math_solver"
|
191 |
-
description = "Solve mathematical problems and analyze mathematical structures"
|
192 |
-
inputs = {
|
193 |
-
"problem": {
|
194 |
-
"type": "string",
|
195 |
-
"description": "Mathematical problem or structure to analyze"
|
196 |
-
}
|
197 |
-
}
|
198 |
-
output_type = "string"
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
if any(veg in item_lower for veg in ["potato", "basil", "broccoli", "celery", "lettuce"]):
|
243 |
-
vegetables.append(item)
|
244 |
-
|
245 |
-
vegetables.sort()
|
246 |
-
return ", ".join(vegetables)
|
247 |
|
248 |
-
|
|
|
249 |
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
# --- Enhanced Agent Definition ---
|
254 |
class GAIAAgent:
|
@@ -261,22 +245,26 @@ class GAIAAgent:
|
|
261 |
token=os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
262 |
)
|
263 |
|
264 |
-
#
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
DataExtractorTool()
|
273 |
]
|
274 |
|
275 |
-
#
|
|
|
|
|
|
|
|
|
|
|
276 |
self.agent = CodeAgent(
|
277 |
-
tools=
|
278 |
model=self.model,
|
279 |
-
max_iterations=
|
280 |
)
|
281 |
|
282 |
print("GAIA Agent initialized successfully.")
|
@@ -291,60 +279,52 @@ class GAIAAgent:
|
|
291 |
# Handle reversed text question
|
292 |
if "ecnetnes siht dnatsrednu uoy fi" in question.lower():
|
293 |
# This is the reversed sentence question
|
294 |
-
processor = TextProcessorTool()
|
295 |
reversed_part = question.split("?,")[0] # Get the reversed part
|
296 |
-
normal_text =
|
297 |
if "left" in normal_text.lower():
|
298 |
return "right"
|
299 |
|
300 |
# Handle YouTube video questions
|
301 |
elif "youtube.com" in question:
|
302 |
-
youtube_tool = YouTubeAnalyzerTool()
|
303 |
# Extract URL
|
304 |
url_match = re.search(r'https://www\.youtube\.com/watch\?v=[^\s,?.]+', question)
|
305 |
if url_match:
|
306 |
url = url_match.group(0)
|
307 |
-
video_info =
|
308 |
|
309 |
# Use search to get more specific info about the video content
|
310 |
-
search_tool = SerperSearchTool()
|
311 |
search_query = f"site:youtube.com {url} transcript content"
|
312 |
-
search_results =
|
313 |
|
314 |
return f"Video Analysis: {video_info}\n\nAdditional Info: {search_results}"
|
315 |
|
316 |
# Handle botanical/grocery list questions
|
317 |
elif "botanical" in question_lower and "vegetable" in question_lower:
|
318 |
-
extractor = DataExtractorTool()
|
319 |
# Extract the list from the question
|
320 |
list_match = re.search(r'milk.*?peanuts', question)
|
321 |
if list_match:
|
322 |
food_list = list_match.group(0)
|
323 |
-
return
|
324 |
|
325 |
# Handle mathematical problems
|
326 |
elif "commutative" in question_lower or "chess" in question_lower:
|
327 |
-
|
328 |
-
math_result = math_tool.forward(question)
|
329 |
|
330 |
# For commutative question, also search for more specific help
|
331 |
if "commutative" in question_lower:
|
332 |
-
|
333 |
-
search_result = search_tool.forward("group theory commutative operation counter examples")
|
334 |
return f"{math_result}\n\nAdditional context: {search_result}"
|
|
|
|
|
335 |
|
336 |
# Handle specific factual questions
|
337 |
else:
|
338 |
# Use search tools for factual questions
|
339 |
-
|
340 |
-
wiki_tool = WikipediaSearchTool()
|
341 |
-
|
342 |
-
# Try Serper search first
|
343 |
-
search_results = search_tool.forward(question)
|
344 |
|
345 |
# For some questions, also try Wikipedia
|
346 |
if any(term in question_lower for term in ["mercedes sosa", "dinosaur", "wikipedia", "olympics"]):
|
347 |
-
wiki_results =
|
348 |
return f"Search Results: {search_results}\n\nWikipedia: {wiki_results}"
|
349 |
|
350 |
return search_results
|
@@ -353,8 +333,7 @@ class GAIAAgent:
|
|
353 |
print(f"Error in agent processing: {e}")
|
354 |
# Fallback to basic search
|
355 |
try:
|
356 |
-
|
357 |
-
return search_tool.forward(question)
|
358 |
except:
|
359 |
return f"I encountered an error processing this question: {question}. Please try rephrasing or breaking it into smaller parts."
|
360 |
|
|
|
5 |
import json
|
6 |
import re
|
7 |
import time
|
8 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, tool
|
|
|
9 |
from typing import Dict, Any, List
|
10 |
import base64
|
11 |
from io import BytesIO
|
|
|
17 |
|
18 |
# --- Custom Tools ---
|
19 |
|
20 |
+
# --- Custom Tools ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
@tool
|
23 |
+
def serper_search(query: str) -> str:
|
24 |
+
"""Search the web using Serper API for current information and specific queries
|
25 |
+
|
26 |
+
Args:
|
27 |
+
query: The search query
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
Search results as formatted string
|
31 |
+
"""
|
32 |
+
try:
|
33 |
+
api_key = os.getenv("SERPER_API_KEY")
|
34 |
+
if not api_key:
|
35 |
+
return "SERPER_API_KEY environment variable not found"
|
36 |
+
|
37 |
+
url = "https://google.serper.dev/search"
|
38 |
+
payload = json.dumps({"q": query, "num": 10})
|
39 |
+
headers = {
|
40 |
+
'X-API-KEY': api_key,
|
41 |
+
'Content-Type': 'application/json'
|
42 |
+
}
|
43 |
+
response = requests.post(url, headers=headers, data=payload, timeout=30)
|
44 |
+
response.raise_for_status()
|
45 |
+
|
46 |
+
data = response.json()
|
47 |
+
results = []
|
48 |
+
|
49 |
+
# Process organic results
|
50 |
+
if 'organic' in data:
|
51 |
+
for item in data['organic'][:5]:
|
52 |
+
results.append(f"Title: {item.get('title', '')}\nSnippet: {item.get('snippet', '')}\nURL: {item.get('link', '')}\n")
|
53 |
+
|
54 |
+
# Add knowledge graph if available
|
55 |
+
if 'knowledgeGraph' in data:
|
56 |
+
kg = data['knowledgeGraph']
|
57 |
+
results.insert(0, f"Knowledge Graph: {kg.get('title', '')} - {kg.get('description', '')}\n")
|
58 |
+
|
59 |
+
return "\n".join(results) if results else "No results found"
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
return f"Search error: {str(e)}"
|
63 |
|
64 |
+
@tool
|
65 |
+
def wikipedia_search(query: str) -> str:
|
66 |
+
"""Search Wikipedia for detailed information on topics
|
67 |
+
|
68 |
+
Args:
|
69 |
+
query: The Wikipedia search query
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
Wikipedia search results
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
# Search for pages
|
76 |
+
search_url = "https://en.wikipedia.org/api/rest_v1/page/summary/" + query.replace(" ", "_")
|
77 |
+
response = requests.get(search_url, timeout=15)
|
78 |
+
|
79 |
+
if response.status_code == 200:
|
80 |
+
data = response.json()
|
81 |
+
return f"Title: {data.get('title', '')}\nSummary: {data.get('extract', '')}\nURL: {data.get('content_urls', {}).get('desktop', {}).get('page', '')}"
|
82 |
+
else:
|
83 |
+
# Fallback to search API
|
84 |
+
search_api = "https://en.wikipedia.org/w/api.php"
|
85 |
+
params = {
|
86 |
+
"action": "query",
|
87 |
+
"format": "json",
|
88 |
+
"list": "search",
|
89 |
+
"srsearch": query,
|
90 |
+
"srlimit": 3
|
91 |
}
|
92 |
+
response = requests.get(search_api, params=params, timeout=15)
|
|
|
|
|
93 |
data = response.json()
|
|
|
94 |
|
95 |
+
results = []
|
96 |
+
for item in data.get('query', {}).get('search', []):
|
97 |
+
results.append(f"Title: {item['title']}\nSnippet: {item['snippet']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
return "\n\n".join(results) if results else "No Wikipedia results found"
|
100 |
|
101 |
+
except Exception as e:
|
102 |
+
return f"Wikipedia search error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
@tool
|
105 |
+
def youtube_analyzer(url: str) -> str:
|
106 |
+
"""Analyze YouTube videos to extract information from titles, descriptions, and comments
|
107 |
+
|
108 |
+
Args:
|
109 |
+
url: YouTube video URL
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
Video information and analysis
|
113 |
+
"""
|
114 |
+
try:
|
115 |
+
# Extract video ID
|
116 |
+
video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', url)
|
117 |
+
if not video_id_match:
|
118 |
+
return "Invalid YouTube URL"
|
119 |
+
|
120 |
+
video_id = video_id_match.group(1)
|
121 |
+
|
122 |
+
# Use oEmbed API to get basic info
|
123 |
+
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
124 |
+
response = requests.get(oembed_url, timeout=15)
|
125 |
+
|
126 |
+
if response.status_code == 200:
|
127 |
+
data = response.json()
|
128 |
+
result = f"Title: {data.get('title', '')}\nAuthor: {data.get('author_name', '')}\n"
|
129 |
|
130 |
+
# Try to get additional info by scraping (basic)
|
131 |
+
try:
|
132 |
+
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
133 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
|
134 |
+
page_response = requests.get(video_url, headers=headers, timeout=15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
if page_response.status_code == 200:
|
137 |
+
content = page_response.text
|
138 |
+
# Extract description from meta tags
|
139 |
+
desc_match = re.search(r'"description":{"simpleText":"([^"]+)"', content)
|
140 |
+
if desc_match:
|
141 |
+
result += f"Description: {desc_match.group(1)}\n"
|
142 |
+
|
143 |
+
# Look for bird-related content
|
144 |
+
if "bird" in content.lower():
|
145 |
+
bird_matches = re.findall(r'\b\d+\s+bird', content.lower())
|
146 |
+
if bird_matches:
|
147 |
+
result += f"Bird mentions found: {bird_matches}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
except:
|
150 |
+
pass
|
151 |
|
152 |
+
return result
|
153 |
+
else:
|
154 |
+
return "Could not retrieve video information"
|
155 |
|
156 |
+
except Exception as e:
|
157 |
+
return f"YouTube analysis error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
@tool
|
160 |
+
def text_processor(text: str, operation: str = "analyze") -> str:
|
161 |
+
"""Process text for various operations like reversing, parsing, and analyzing
|
162 |
+
|
163 |
+
Args:
|
164 |
+
text: Text to process
|
165 |
+
operation: Operation to perform (reverse, parse, analyze)
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
Processed text result
|
169 |
+
"""
|
170 |
+
try:
|
171 |
+
if operation == "reverse":
|
172 |
+
return text[::-1]
|
173 |
+
elif operation == "parse":
|
174 |
+
# Extract meaningful information
|
175 |
+
words = text.split()
|
176 |
+
return f"Word count: {len(words)}\nFirst word: {words[0] if words else 'None'}\nLast word: {words[-1] if words else 'None'}"
|
177 |
+
else:
|
178 |
+
# General analysis
|
179 |
+
return f"Text length: {len(text)}\nWord count: {len(text.split())}\nText: {text[:200]}..."
|
180 |
+
except Exception as e:
|
181 |
+
return f"Text processing error: {str(e)}"
|
182 |
|
183 |
+
@tool
|
184 |
+
def math_solver(problem: str) -> str:
|
185 |
+
"""Solve mathematical problems and analyze mathematical structures
|
186 |
+
|
187 |
+
Args:
|
188 |
+
problem: Mathematical problem or structure to analyze
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
Mathematical analysis and solution
|
192 |
+
"""
|
193 |
+
try:
|
194 |
+
# Basic math operations and analysis
|
195 |
+
if "commutative" in problem.lower():
|
196 |
+
return "To check commutativity, verify if a*b = b*a for all elements. Find counter-examples where this fails."
|
197 |
+
elif "chess" in problem.lower():
|
198 |
+
return "For chess problems, analyze the position systematically: check for checks, captures, tactical motifs like pins, forks, or checkmate patterns."
|
199 |
+
else:
|
200 |
+
return f"Mathematical analysis needed for: {problem[:100]}..."
|
201 |
+
except Exception as e:
|
202 |
+
return f"Math solver error: {str(e)}"
|
203 |
|
204 |
+
@tool
|
205 |
+
def data_extractor(source: str, target: str) -> str:
|
206 |
+
"""Extract structured data from various sources
|
207 |
+
|
208 |
+
Args:
|
209 |
+
source: Data source or content to extract from
|
210 |
+
target: What to extract
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
Extracted data
|
214 |
+
"""
|
215 |
+
try:
|
216 |
+
# Botanical classification helper
|
217 |
+
if "botanical" in target.lower() or "vegetable" in target.lower():
|
218 |
+
vegetables = []
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
# Common botanical classifications - only true vegetables
|
221 |
+
items = [item.strip() for item in source.split(",")]
|
222 |
|
223 |
+
for item in items:
|
224 |
+
item_lower = item.lower()
|
225 |
+
# Only include botanically true vegetables (not fruits used as vegetables)
|
226 |
+
if any(veg in item_lower for veg in ["sweet potato", "basil", "broccoli", "celery", "lettuce"]):
|
227 |
+
vegetables.append(item)
|
228 |
+
|
229 |
+
vegetables.sort()
|
230 |
+
return ", ".join(vegetables)
|
231 |
+
|
232 |
+
return f"Data extraction for {target} from {source[:100]}..."
|
233 |
+
|
234 |
+
except Exception as e:
|
235 |
+
return f"Data extraction error: {str(e)}"
|
236 |
|
237 |
# --- Enhanced Agent Definition ---
|
238 |
class GAIAAgent:
|
|
|
245 |
token=os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
246 |
)
|
247 |
|
248 |
+
# Custom tools list
|
249 |
+
custom_tools = [
|
250 |
+
serper_search,
|
251 |
+
wikipedia_search,
|
252 |
+
youtube_analyzer,
|
253 |
+
text_processor,
|
254 |
+
math_solver,
|
255 |
+
data_extractor
|
|
|
256 |
]
|
257 |
|
258 |
+
# Add DuckDuckGo search tool
|
259 |
+
ddg_tool = DuckDuckGoSearchTool()
|
260 |
+
|
261 |
+
# Create agent with all tools
|
262 |
+
all_tools = custom_tools + [ddg_tool]
|
263 |
+
|
264 |
self.agent = CodeAgent(
|
265 |
+
tools=all_tools,
|
266 |
model=self.model,
|
267 |
+
max_iterations=3
|
268 |
)
|
269 |
|
270 |
print("GAIA Agent initialized successfully.")
|
|
|
279 |
# Handle reversed text question
|
280 |
if "ecnetnes siht dnatsrednu uoy fi" in question.lower():
|
281 |
# This is the reversed sentence question
|
|
|
282 |
reversed_part = question.split("?,")[0] # Get the reversed part
|
283 |
+
normal_text = text_processor(reversed_part, "reverse")
|
284 |
if "left" in normal_text.lower():
|
285 |
return "right"
|
286 |
|
287 |
# Handle YouTube video questions
|
288 |
elif "youtube.com" in question:
|
|
|
289 |
# Extract URL
|
290 |
url_match = re.search(r'https://www\.youtube\.com/watch\?v=[^\s,?.]+', question)
|
291 |
if url_match:
|
292 |
url = url_match.group(0)
|
293 |
+
video_info = youtube_analyzer(url)
|
294 |
|
295 |
# Use search to get more specific info about the video content
|
|
|
296 |
search_query = f"site:youtube.com {url} transcript content"
|
297 |
+
search_results = serper_search(search_query)
|
298 |
|
299 |
return f"Video Analysis: {video_info}\n\nAdditional Info: {search_results}"
|
300 |
|
301 |
# Handle botanical/grocery list questions
|
302 |
elif "botanical" in question_lower and "vegetable" in question_lower:
|
|
|
303 |
# Extract the list from the question
|
304 |
list_match = re.search(r'milk.*?peanuts', question)
|
305 |
if list_match:
|
306 |
food_list = list_match.group(0)
|
307 |
+
return data_extractor(food_list, "botanical vegetables")
|
308 |
|
309 |
# Handle mathematical problems
|
310 |
elif "commutative" in question_lower or "chess" in question_lower:
|
311 |
+
math_result = math_solver(question)
|
|
|
312 |
|
313 |
# For commutative question, also search for more specific help
|
314 |
if "commutative" in question_lower:
|
315 |
+
search_result = serper_search("group theory commutative operation counter examples")
|
|
|
316 |
return f"{math_result}\n\nAdditional context: {search_result}"
|
317 |
+
|
318 |
+
return math_result
|
319 |
|
320 |
# Handle specific factual questions
|
321 |
else:
|
322 |
# Use search tools for factual questions
|
323 |
+
search_results = serper_search(question)
|
|
|
|
|
|
|
|
|
324 |
|
325 |
# For some questions, also try Wikipedia
|
326 |
if any(term in question_lower for term in ["mercedes sosa", "dinosaur", "wikipedia", "olympics"]):
|
327 |
+
wiki_results = wikipedia_search(question)
|
328 |
return f"Search Results: {search_results}\n\nWikipedia: {wiki_results}"
|
329 |
|
330 |
return search_results
|
|
|
333 |
print(f"Error in agent processing: {e}")
|
334 |
# Fallback to basic search
|
335 |
try:
|
336 |
+
return serper_search(question)
|
|
|
337 |
except:
|
338 |
return f"I encountered an error processing this question: {question}. Please try rephrasing or breaking it into smaller parts."
|
339 |
|
requirements.txt
CHANGED
@@ -2,10 +2,10 @@ gradio==4.44.0
|
|
2 |
requests==2.31.0
|
3 |
pandas==2.0.3
|
4 |
smolagents==1.19.0
|
5 |
-
transformers==4.
|
|
|
6 |
torch==2.1.0
|
7 |
Pillow==10.0.1
|
8 |
numpy==1.24.3
|
9 |
-
huggingface-hub==0.19.4
|
10 |
datasets==2.14.6
|
11 |
accelerate==0.24.1
|
|
|
2 |
requests==2.31.0
|
3 |
pandas==2.0.3
|
4 |
smolagents==1.19.0
|
5 |
+
transformers==4.44.2
|
6 |
+
huggingface-hub>=0.31.2
|
7 |
torch==2.1.0
|
8 |
Pillow==10.0.1
|
9 |
numpy==1.24.3
|
|
|
10 |
datasets==2.14.6
|
11 |
accelerate==0.24.1
|