Spaces:
Runtime error
Runtime error
fix
Browse files
app.py
CHANGED
@@ -19,7 +19,14 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
19 |
|
20 |
@tool
|
21 |
def serper_search(query: str) -> str:
|
22 |
-
"""Enhanced search tool optimized for GAIA question types
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
api_key = os.getenv("SERPER_API_KEY")
|
25 |
if not api_key:
|
@@ -75,7 +82,14 @@ def serper_search(query: str) -> str:
|
|
75 |
|
76 |
@tool
|
77 |
def math_solver(problem: str) -> str:
|
78 |
-
"""Enhanced math solver for GAIA questions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
try:
|
80 |
# Handle chess-related questions
|
81 |
if "chess" in problem.lower():
|
@@ -105,7 +119,15 @@ def math_solver(problem: str) -> str:
|
|
105 |
|
106 |
@tool
|
107 |
def text_processor(text: str, operation: str = "reverse") -> str:
|
108 |
-
"""Enhanced text processing for GAIA questions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
try:
|
110 |
# Handle specific reversed text question
|
111 |
if "ecnetnes siht dnatsrednu uoy fi" in text.lower():
|
@@ -130,7 +152,15 @@ def text_processor(text: str, operation: str = "reverse") -> str:
|
|
130 |
|
131 |
@tool
|
132 |
def data_extractor(source: str, target: str) -> str:
|
133 |
-
"""Enhanced data extraction for GAIA questions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
try:
|
135 |
# Handle botanical classification questions
|
136 |
if "botanical" in target.lower() or "vegetable" in target.lower():
|
@@ -231,167 +261,135 @@ with gr.Blocks() as demo:
|
|
231 |
test_btn.click(test_agent, inputs=question_input, outputs=output)
|
232 |
|
233 |
# Full evaluation handler
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
space_id = os.getenv("SPACE_ID")
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
|
253 |
-
|
254 |
-
try:
|
255 |
-
agent = GAIAAgent()
|
256 |
-
except Exception as e:
|
257 |
-
print(f"Error instantiating agent: {e}")
|
258 |
-
return f"Error initializing agent: {e}", None
|
259 |
-
|
260 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
261 |
-
print(agent_code)
|
262 |
-
|
263 |
-
# 2. Fetch Questions
|
264 |
-
print(f"Fetching questions from: {questions_url}")
|
265 |
-
try:
|
266 |
-
response = requests.get(questions_url, timeout=15)
|
267 |
-
response.raise_for_status()
|
268 |
-
questions_data = response.json()
|
269 |
-
if not questions_data:
|
270 |
-
print("Fetched questions list is empty.")
|
271 |
-
return "Fetched questions list is empty or invalid format.", None
|
272 |
-
print(f"Fetched {len(questions_data)} questions.")
|
273 |
-
except requests.exceptions.RequestException as e:
|
274 |
-
print(f"Error fetching questions: {e}")
|
275 |
-
return f"Error fetching questions: {e}", None
|
276 |
-
except requests.exceptions.JSONDecodeError as e:
|
277 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
278 |
-
print(f"Response text: {response.text[:500]}")
|
279 |
-
return f"Error decoding server response for questions: {e}", None
|
280 |
-
except Exception as e:
|
281 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
282 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
283 |
-
|
284 |
-
# 3. Run Agent
|
285 |
-
results_log = []
|
286 |
-
answers_payload = []
|
287 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
288 |
-
|
289 |
-
for i, item in enumerate(questions_data):
|
290 |
-
task_id = item.get("task_id")
|
291 |
-
question_text = item.get("question")
|
292 |
-
if not task_id or question_text is None:
|
293 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
294 |
-
continue
|
295 |
-
|
296 |
-
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
297 |
try:
|
298 |
-
|
299 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
300 |
-
results_log.append({"Task ID": task_id, "Question": question_text[:100] + "...", "Submitted Answer": submitted_answer[:200] + "..."})
|
301 |
-
|
302 |
-
# Add small delay to avoid rate limiting
|
303 |
-
time.sleep(1)
|
304 |
-
|
305 |
except Exception as e:
|
306 |
-
|
307 |
-
|
308 |
|
309 |
-
|
310 |
-
print(
|
311 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
316 |
-
print(status_update)
|
317 |
-
|
318 |
-
# 5. Submit
|
319 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
320 |
-
try:
|
321 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
322 |
-
response.raise_for_status()
|
323 |
-
result_data = response.json()
|
324 |
-
final_status = (
|
325 |
-
f"Submission Successful!\n"
|
326 |
-
f"User: {result_data.get('username')}\n"
|
327 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
328 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
329 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
330 |
-
)
|
331 |
-
print("Submission successful.")
|
332 |
-
results_df = pd.DataFrame(results_log)
|
333 |
-
return final_status, results_df
|
334 |
-
except requests.exceptions.HTTPError as e:
|
335 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
336 |
try:
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
return status_message, results_df
|
355 |
-
except Exception as e:
|
356 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
357 |
-
print(status_message)
|
358 |
-
results_df = pd.DataFrame(results_log)
|
359 |
-
return status_message, results_df
|
360 |
|
361 |
-
#
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
"""
|
366 |
-
**Enhanced Agent for GAIA Benchmark**
|
367 |
-
|
368 |
-
This agent uses multiple specialized tools to handle diverse question types:
|
369 |
-
- Web search (Serper API + DuckDuckGo)
|
370 |
-
- Wikipedia search
|
371 |
-
- YouTube video analysis
|
372 |
-
- Text processing and reversal
|
373 |
-
- Mathematical problem solving
|
374 |
-
- Data extraction and botanical classification
|
375 |
-
|
376 |
-
**Instructions:**
|
377 |
-
1. Log in to your Hugging Face account
|
378 |
-
2. Click 'Run Evaluation & Submit All Answers' to start the benchmark
|
379 |
-
3. The agent will process all questions and submit results automatically
|
380 |
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
-
|
|
|
|
|
386 |
|
387 |
-
|
|
|
|
|
|
|
388 |
|
389 |
-
|
390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
-
|
393 |
-
|
394 |
-
outputs=[
|
395 |
)
|
396 |
|
397 |
if __name__ == "__main__":
|
|
|
19 |
|
20 |
@tool
|
21 |
def serper_search(query: str) -> str:
|
22 |
+
"""Enhanced search tool optimized for GAIA question types
|
23 |
+
|
24 |
+
Args:
|
25 |
+
query: The search query to execute
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
Search results as a formatted string
|
29 |
+
"""
|
30 |
try:
|
31 |
api_key = os.getenv("SERPER_API_KEY")
|
32 |
if not api_key:
|
|
|
82 |
|
83 |
@tool
|
84 |
def math_solver(problem: str) -> str:
|
85 |
+
"""Enhanced math solver for GAIA questions
|
86 |
+
|
87 |
+
Args:
|
88 |
+
problem: The mathematical problem to solve
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
Solution or analysis of the problem
|
92 |
+
"""
|
93 |
try:
|
94 |
# Handle chess-related questions
|
95 |
if "chess" in problem.lower():
|
|
|
119 |
|
120 |
@tool
|
121 |
def text_processor(text: str, operation: str = "reverse") -> str:
|
122 |
+
"""Enhanced text processing for GAIA questions
|
123 |
+
|
124 |
+
Args:
|
125 |
+
text: The text to process
|
126 |
+
operation: The operation to perform (reverse, extract, etc.)
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
Processed text result
|
130 |
+
"""
|
131 |
try:
|
132 |
# Handle specific reversed text question
|
133 |
if "ecnetnes siht dnatsrednu uoy fi" in text.lower():
|
|
|
152 |
|
153 |
@tool
|
154 |
def data_extractor(source: str, target: str) -> str:
|
155 |
+
"""Enhanced data extraction for GAIA questions
|
156 |
+
|
157 |
+
Args:
|
158 |
+
source: The source data to extract from
|
159 |
+
target: The type of data to extract
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
Extracted data as a string
|
163 |
+
"""
|
164 |
try:
|
165 |
# Handle botanical classification questions
|
166 |
if "botanical" in target.lower() or "vegetable" in target.lower():
|
|
|
261 |
test_btn.click(test_agent, inputs=question_input, outputs=output)
|
262 |
|
263 |
# Full evaluation handler
|
264 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
265 |
+
"""
|
266 |
+
Fetches all questions, runs the GAIA Agent on them, submits all answers,
|
267 |
+
and displays the results.
|
268 |
+
"""
|
269 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
270 |
|
271 |
+
if profile:
|
272 |
+
username = f"{profile.username}"
|
273 |
+
print(f"User logged in: {username}")
|
274 |
+
else:
|
275 |
+
print("User not logged in.")
|
276 |
+
return "Please Login to Hugging Face with the button.", None
|
277 |
|
278 |
+
api_url = DEFAULT_API_URL
|
279 |
+
questions_url = f"{api_url}/questions"
|
280 |
+
submit_url = f"{api_url}/submit"
|
281 |
|
282 |
+
# 1. Instantiate Agent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
try:
|
284 |
+
agent = GAIAAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
except Exception as e:
|
286 |
+
print(f"Error instantiating agent: {e}")
|
287 |
+
return f"Error initializing agent: {e}", None
|
288 |
|
289 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
290 |
+
print(agent_code)
|
|
|
291 |
|
292 |
+
# 2. Fetch Questions
|
293 |
+
print(f"Fetching questions from: {questions_url}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
try:
|
295 |
+
response = requests.get(questions_url, timeout=15)
|
296 |
+
response.raise_for_status()
|
297 |
+
questions_data = response.json()
|
298 |
+
if not questions_data:
|
299 |
+
print("Fetched questions list is empty.")
|
300 |
+
return "Fetched questions list is empty or invalid format.", None
|
301 |
+
print(f"Fetched {len(questions_data)} questions.")
|
302 |
+
except requests.exceptions.RequestException as e:
|
303 |
+
print(f"Error fetching questions: {e}")
|
304 |
+
return f"Error fetching questions: {e}", None
|
305 |
+
except requests.exceptions.JSONDecodeError as e:
|
306 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
307 |
+
print(f"Response text: {response.text[:500]}")
|
308 |
+
return f"Error decoding server response for questions: {e}", None
|
309 |
+
except Exception as e:
|
310 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
311 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
+
# 3. Run Agent
|
314 |
+
results_log = []
|
315 |
+
answers_payload = []
|
316 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
+
for i, item in enumerate(questions_data):
|
319 |
+
task_id = item.get("task_id")
|
320 |
+
question_text = item.get("question")
|
321 |
+
if not task_id or question_text is None:
|
322 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
323 |
+
continue
|
324 |
+
|
325 |
+
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
326 |
+
try:
|
327 |
+
submitted_answer = agent(question_text)
|
328 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
329 |
+
results_log.append({"Task ID": task_id, "Question": question_text[:100] + "...", "Submitted Answer": submitted_answer[:200] + "..."})
|
330 |
+
|
331 |
+
# Add small delay to avoid rate limiting
|
332 |
+
time.sleep(1)
|
333 |
+
|
334 |
+
except Exception as e:
|
335 |
+
print(f"Error running agent on task {task_id}: {e}")
|
336 |
+
results_log.append({"Task ID": task_id, "Question": question_text[:100] + "...", "Submitted Answer": f"AGENT ERROR: {e}"})
|
337 |
|
338 |
+
if not answers_payload:
|
339 |
+
print("Agent did not produce any answers to submit.")
|
340 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
341 |
|
342 |
+
# 4. Prepare Submission
|
343 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
344 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
345 |
+
print(status_update)
|
346 |
|
347 |
+
# 5. Submit
|
348 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
349 |
+
try:
|
350 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
351 |
+
response.raise_for_status()
|
352 |
+
result_data = response.json()
|
353 |
+
final_status = (
|
354 |
+
f"Submission Successful!\n"
|
355 |
+
f"User: {result_data.get('username')}\n"
|
356 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
357 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
358 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
359 |
+
)
|
360 |
+
print("Submission successful.")
|
361 |
+
results_df = pd.DataFrame(results_log)
|
362 |
+
return final_status, results_df
|
363 |
+
except requests.exceptions.HTTPError as e:
|
364 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
365 |
+
try:
|
366 |
+
error_json = e.response.json()
|
367 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
368 |
+
except requests.exceptions.JSONDecodeError:
|
369 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
370 |
+
status_message = f"Submission Failed: {error_detail}"
|
371 |
+
print(status_message)
|
372 |
+
results_df = pd.DataFrame(results_log)
|
373 |
+
return status_message, results_df
|
374 |
+
except requests.exceptions.Timeout:
|
375 |
+
status_message = "Submission Failed: The request timed out."
|
376 |
+
print(status_message)
|
377 |
+
results_df = pd.DataFrame(results_log)
|
378 |
+
return status_message, results_df
|
379 |
+
except requests.exceptions.RequestException as e:
|
380 |
+
status_message = f"Submission Failed: Network error - {e}"
|
381 |
+
print(status_message)
|
382 |
+
results_df = pd.DataFrame(results_log)
|
383 |
+
return status_message, results_df
|
384 |
+
except Exception as e:
|
385 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
386 |
+
print(status_message)
|
387 |
+
results_df = pd.DataFrame(results_log)
|
388 |
+
return status_message, results_df
|
389 |
|
390 |
+
run_btn.click(
|
391 |
+
run_and_submit_all,
|
392 |
+
outputs=[status, results]
|
393 |
)
|
394 |
|
395 |
if __name__ == "__main__":
|