Spaces:
Runtime error
Runtime error
fix
Browse files
app.py
CHANGED
@@ -13,24 +13,35 @@ from urllib.parse import urlparse, parse_qs
|
|
13 |
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
-
WIKIPEDIA_API_KEY = os.getenv("WIKIPEDIA_API_KEY", "default_key")
|
17 |
MODEL_ID = "HuggingFaceTB/SmolLM-135M-Instruct"
|
18 |
|
19 |
# --- Initialize Model ---
|
20 |
print("Loading model...")
|
21 |
try:
|
|
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
MODEL_ID,
|
24 |
torch_dtype="auto",
|
25 |
device_map="auto",
|
26 |
-
attn_implementation="flash_attention_2"
|
27 |
)
|
28 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
|
|
|
|
|
|
|
|
29 |
print("✅ Model loaded successfully")
|
30 |
except Exception as e:
|
31 |
print(f"❌ Failed to load model: {e}")
|
32 |
raise
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# --- Enhanced Tools with Rate Limiting ---
|
35 |
|
36 |
@tool
|
@@ -70,6 +81,7 @@ def smart_web_search(query: str) -> str:
|
|
70 |
except Exception as e:
|
71 |
print(f"Serper API failed: {e}")
|
72 |
|
|
|
73 |
if any(term in query.lower() for term in ["wikipedia", "who", "what", "when", "where"]):
|
74 |
return get_wikipedia_info(query)
|
75 |
|
@@ -83,10 +95,12 @@ def smart_web_search(query: str) -> str:
|
|
83 |
|
84 |
@tool
|
85 |
def get_wikipedia_info(query: str) -> str:
|
86 |
-
"""Enhanced Wikipedia search
|
87 |
try:
|
|
|
88 |
clean_query = re.sub(r'[^a-zA-Z0-9 ]', '', query)[:100]
|
89 |
|
|
|
90 |
params = {
|
91 |
'action': 'query',
|
92 |
'format': 'json',
|
@@ -97,13 +111,11 @@ def get_wikipedia_info(query: str) -> str:
|
|
97 |
'utf8': 1
|
98 |
}
|
99 |
|
100 |
-
if WIKIPEDIA_API_KEY and WIKIPEDIA_API_KEY != "default_key":
|
101 |
-
params['apikey'] = WIKIPEDIA_API_KEY
|
102 |
-
|
103 |
response = requests.get(
|
104 |
"https://en.wikipedia.org/w/api.php",
|
105 |
params=params,
|
106 |
-
timeout=10
|
|
|
107 |
)
|
108 |
|
109 |
if response.status_code == 200:
|
@@ -118,9 +130,14 @@ def get_wikipedia_info(query: str) -> str:
|
|
118 |
if results:
|
119 |
return "\n\n".join(results)
|
120 |
|
|
|
121 |
page_title = clean_query.replace(' ', '_')
|
122 |
extract_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{page_title}"
|
123 |
-
extract_response = requests.get(
|
|
|
|
|
|
|
|
|
124 |
|
125 |
if extract_response.status_code == 200:
|
126 |
extract_data = extract_response.json()
|
@@ -153,6 +170,7 @@ def extract_youtube_details(url: str) -> str:
|
|
153 |
|
154 |
results = []
|
155 |
|
|
|
156 |
try:
|
157 |
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
158 |
response = requests.get(oembed_url, timeout=10)
|
@@ -165,16 +183,18 @@ def extract_youtube_details(url: str) -> str:
|
|
165 |
except Exception as e:
|
166 |
print(f"oEmbed failed: {e}")
|
167 |
|
|
|
168 |
try:
|
169 |
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
170 |
headers = {
|
171 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
172 |
}
|
173 |
page_response = requests.get(video_url, headers=headers, timeout=15)
|
174 |
|
175 |
if page_response.status_code == 200:
|
176 |
content = page_response.text
|
177 |
|
|
|
178 |
bird_patterns = [
|
179 |
r'(\d+)\s+bird\s+species',
|
180 |
r'(\d+)\s+species\s+of\s+bird',
|
@@ -195,6 +215,7 @@ def extract_youtube_details(url: str) -> str:
|
|
195 |
max_species = max(numbers)
|
196 |
results.append(f"BIRD_SPECIES_COUNT: {max_species}")
|
197 |
|
|
|
198 |
view_match = re.search(r'"viewCount":"(\d+)"', content)
|
199 |
if view_match:
|
200 |
views = int(view_match.group(1))
|
@@ -245,6 +266,7 @@ def solve_advanced_math(problem: str) -> str:
|
|
245 |
try:
|
246 |
problem_lower = problem.lower()
|
247 |
|
|
|
248 |
if "commutative" in problem_lower and "|" in problem:
|
249 |
lines = problem.split('\n')
|
250 |
table_lines = [line for line in lines if '|' in line and any(x in line for x in ['a', 'b', 'c', 'd', 'e'])]
|
@@ -275,12 +297,14 @@ def solve_advanced_math(problem: str) -> str:
|
|
275 |
result = sorted(list(breaking_elements))
|
276 |
return ', '.join(result) if result else "No elements break commutativity"
|
277 |
|
|
|
278 |
elif "chess" in problem_lower or "move" in problem_lower:
|
279 |
chess_moves = re.findall(r'\b[KQRBN]?[a-h]?[1-8]?x?[a-h][1-8][+#]?\b', problem)
|
280 |
if chess_moves:
|
281 |
return f"Chess moves found: {', '.join(chess_moves)}"
|
282 |
return "Analyze position for best move: check for tactics, threats, and forcing moves"
|
283 |
|
|
|
284 |
numbers = re.findall(r'-?\d+\.?\d*', problem)
|
285 |
if numbers:
|
286 |
nums = [float(n) for n in numbers if n.replace('.', '').replace('-', '').isdigit()]
|
@@ -300,6 +324,7 @@ def solve_advanced_math(problem: str) -> str:
|
|
300 |
result *= n
|
301 |
return str(result)
|
302 |
|
|
|
303 |
if "%" in problem or "percent" in problem_lower:
|
304 |
percentages = re.findall(r'(\d+\.?\d*)%', problem)
|
305 |
if percentages:
|
@@ -325,14 +350,25 @@ class OptimizedGAIAAgent:
|
|
325 |
def generate_with_model(self, prompt: str) -> str:
|
326 |
"""Generate response using the SmolLM model"""
|
327 |
try:
|
328 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
except Exception as e:
|
337 |
print(f"Model generation failed: {e}")
|
338 |
return ""
|
@@ -341,9 +377,11 @@ class OptimizedGAIAAgent:
|
|
341 |
"""Analyze question type and provide targeted solution"""
|
342 |
question_lower = question.lower()
|
343 |
|
|
|
344 |
if "ecnetnes siht dnatsrednu uoy fi" in question_lower:
|
345 |
return decode_reversed_text(question)
|
346 |
|
|
|
347 |
if "youtube.com" in question or "youtu.be" in question:
|
348 |
url_match = re.search(r'https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)([a-zA-Z0-9_-]+)', question)
|
349 |
if url_match:
|
@@ -351,24 +389,29 @@ class OptimizedGAIAAgent:
|
|
351 |
if "highest number" in question_lower and "bird species" in question_lower:
|
352 |
numbers = re.findall(r'BIRD_SPECIES_COUNT:\s*(\d+)', result)
|
353 |
if numbers:
|
354 |
-
return max([int(x) for x in numbers])
|
355 |
return result
|
356 |
|
|
|
357 |
if any(term in question_lower for term in ["commutative", "operation", "table", "chess", "checkmate"]):
|
358 |
return solve_advanced_math(question)
|
359 |
|
|
|
360 |
if any(term in question_lower for term in ["who", "what", "when", "where", "wikipedia", "article"]):
|
361 |
return get_wikipedia_info(question)
|
362 |
|
|
|
363 |
if "olympics" in question_lower or "1928" in question:
|
364 |
return get_wikipedia_info("1928 Summer Olympics")
|
365 |
|
|
|
366 |
return smart_web_search(question)
|
367 |
|
368 |
def solve(self, question: str) -> str:
|
369 |
"""Main solving method with fallback chain"""
|
370 |
print(f"Solving: {question[:80]}...")
|
371 |
|
|
|
372 |
try:
|
373 |
direct_result = self.analyze_and_solve(question)
|
374 |
if direct_result and len(str(direct_result).strip()) > 3:
|
@@ -376,13 +419,14 @@ class OptimizedGAIAAgent:
|
|
376 |
except Exception as e:
|
377 |
print(f"Direct analysis failed: {e}")
|
378 |
|
|
|
379 |
try:
|
380 |
time.sleep(2)
|
381 |
-
prompt = f"""Answer the following question
|
382 |
|
383 |
Question: {question}
|
384 |
|
385 |
-
|
386 |
|
387 |
result = self.generate_with_model(prompt)
|
388 |
if result and len(str(result).strip()) > 3:
|
@@ -390,6 +434,7 @@ Think step by step and provide a detailed answer:"""
|
|
390 |
except Exception as e:
|
391 |
print(f"Model generation failed: {e}")
|
392 |
|
|
|
393 |
time.sleep(3)
|
394 |
return smart_web_search(question)
|
395 |
|
@@ -455,6 +500,7 @@ def run_evaluation(profile: gr.OAuthProfile | None):
|
|
455 |
|
456 |
print(f"{status} Answer: {str(answer)[:100]}")
|
457 |
|
|
|
458 |
time.sleep(random.uniform(2, 4))
|
459 |
|
460 |
except Exception as e:
|
@@ -472,6 +518,7 @@ def run_evaluation(profile: gr.OAuthProfile | None):
|
|
472 |
})
|
473 |
print(f"❌ Error: {e}")
|
474 |
|
|
|
475 |
space_id = os.getenv("SPACE_ID", "unknown")
|
476 |
submission = {
|
477 |
"username": username,
|
@@ -507,7 +554,7 @@ def run_evaluation(profile: gr.OAuthProfile | None):
|
|
507 |
# --- Gradio Interface ---
|
508 |
with gr.Blocks(title="Optimized GAIA Agent", theme=gr.themes.Soft()) as demo:
|
509 |
gr.Markdown("# 🎯 Optimized GAIA Agent")
|
510 |
-
gr.Markdown("**SmolLM-135M-Instruct •
|
511 |
|
512 |
with gr.Row():
|
513 |
gr.LoginButton()
|
@@ -532,7 +579,7 @@ with gr.Blocks(title="Optimized GAIA Agent", theme=gr.themes.Soft()) as demo:
|
|
532 |
if __name__ == "__main__":
|
533 |
print("🎯 Starting Optimized GAIA Agent...")
|
534 |
|
535 |
-
env_vars = ["SPACE_ID", "SERPER_API_KEY"
|
536 |
for var in env_vars:
|
537 |
status = "✅" if os.getenv(var) else "⚠️"
|
538 |
print(f"{status} {var}")
|
|
|
13 |
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
16 |
MODEL_ID = "HuggingFaceTB/SmolLM-135M-Instruct"
|
17 |
|
18 |
# --- Initialize Model ---
|
19 |
print("Loading model...")
|
20 |
try:
|
21 |
+
# Remove flash_attention_2 to avoid dependency issues
|
22 |
model = AutoModelForCausalLM.from_pretrained(
|
23 |
MODEL_ID,
|
24 |
torch_dtype="auto",
|
25 |
device_map="auto",
|
26 |
+
# Removed attn_implementation="flash_attention_2"
|
27 |
)
|
28 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
29 |
+
|
30 |
+
# Add padding token if not present
|
31 |
+
if tokenizer.pad_token is None:
|
32 |
+
tokenizer.pad_token = tokenizer.eos_token
|
33 |
+
|
34 |
print("✅ Model loaded successfully")
|
35 |
except Exception as e:
|
36 |
print(f"❌ Failed to load model: {e}")
|
37 |
raise
|
38 |
|
39 |
+
# --- Tool Decorator ---
|
40 |
+
def tool(func):
|
41 |
+
"""Simple tool decorator"""
|
42 |
+
func._is_tool = True
|
43 |
+
return func
|
44 |
+
|
45 |
# --- Enhanced Tools with Rate Limiting ---
|
46 |
|
47 |
@tool
|
|
|
81 |
except Exception as e:
|
82 |
print(f"Serper API failed: {e}")
|
83 |
|
84 |
+
# Fallback to Wikipedia for knowledge queries
|
85 |
if any(term in query.lower() for term in ["wikipedia", "who", "what", "when", "where"]):
|
86 |
return get_wikipedia_info(query)
|
87 |
|
|
|
95 |
|
96 |
@tool
|
97 |
def get_wikipedia_info(query: str) -> str:
|
98 |
+
"""Enhanced Wikipedia search without API key requirement."""
|
99 |
try:
|
100 |
+
# Clean the query
|
101 |
clean_query = re.sub(r'[^a-zA-Z0-9 ]', '', query)[:100]
|
102 |
|
103 |
+
# Use Wikipedia API without API key (public access)
|
104 |
params = {
|
105 |
'action': 'query',
|
106 |
'format': 'json',
|
|
|
111 |
'utf8': 1
|
112 |
}
|
113 |
|
|
|
|
|
|
|
114 |
response = requests.get(
|
115 |
"https://en.wikipedia.org/w/api.php",
|
116 |
params=params,
|
117 |
+
timeout=10,
|
118 |
+
headers={'User-Agent': 'GAIA-Agent/1.0'}
|
119 |
)
|
120 |
|
121 |
if response.status_code == 200:
|
|
|
130 |
if results:
|
131 |
return "\n\n".join(results)
|
132 |
|
133 |
+
# Fallback to REST API
|
134 |
page_title = clean_query.replace(' ', '_')
|
135 |
extract_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{page_title}"
|
136 |
+
extract_response = requests.get(
|
137 |
+
extract_url,
|
138 |
+
timeout=8,
|
139 |
+
headers={'User-Agent': 'GAIA-Agent/1.0'}
|
140 |
+
)
|
141 |
|
142 |
if extract_response.status_code == 200:
|
143 |
extract_data = extract_response.json()
|
|
|
170 |
|
171 |
results = []
|
172 |
|
173 |
+
# Try oEmbed API first
|
174 |
try:
|
175 |
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
176 |
response = requests.get(oembed_url, timeout=10)
|
|
|
183 |
except Exception as e:
|
184 |
print(f"oEmbed failed: {e}")
|
185 |
|
186 |
+
# Try to extract additional info from page
|
187 |
try:
|
188 |
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
189 |
headers = {
|
190 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
191 |
}
|
192 |
page_response = requests.get(video_url, headers=headers, timeout=15)
|
193 |
|
194 |
if page_response.status_code == 200:
|
195 |
content = page_response.text
|
196 |
|
197 |
+
# Look for bird species mentions
|
198 |
bird_patterns = [
|
199 |
r'(\d+)\s+bird\s+species',
|
200 |
r'(\d+)\s+species\s+of\s+bird',
|
|
|
215 |
max_species = max(numbers)
|
216 |
results.append(f"BIRD_SPECIES_COUNT: {max_species}")
|
217 |
|
218 |
+
# Extract view count
|
219 |
view_match = re.search(r'"viewCount":"(\d+)"', content)
|
220 |
if view_match:
|
221 |
views = int(view_match.group(1))
|
|
|
266 |
try:
|
267 |
problem_lower = problem.lower()
|
268 |
|
269 |
+
# Handle commutative operation tables
|
270 |
if "commutative" in problem_lower and "|" in problem:
|
271 |
lines = problem.split('\n')
|
272 |
table_lines = [line for line in lines if '|' in line and any(x in line for x in ['a', 'b', 'c', 'd', 'e'])]
|
|
|
297 |
result = sorted(list(breaking_elements))
|
298 |
return ', '.join(result) if result else "No elements break commutativity"
|
299 |
|
300 |
+
# Handle chess problems
|
301 |
elif "chess" in problem_lower or "move" in problem_lower:
|
302 |
chess_moves = re.findall(r'\b[KQRBN]?[a-h]?[1-8]?x?[a-h][1-8][+#]?\b', problem)
|
303 |
if chess_moves:
|
304 |
return f"Chess moves found: {', '.join(chess_moves)}"
|
305 |
return "Analyze position for best move: check for tactics, threats, and forcing moves"
|
306 |
|
307 |
+
# Handle basic arithmetic
|
308 |
numbers = re.findall(r'-?\d+\.?\d*', problem)
|
309 |
if numbers:
|
310 |
nums = [float(n) for n in numbers if n.replace('.', '').replace('-', '').isdigit()]
|
|
|
324 |
result *= n
|
325 |
return str(result)
|
326 |
|
327 |
+
# Handle percentages
|
328 |
if "%" in problem or "percent" in problem_lower:
|
329 |
percentages = re.findall(r'(\d+\.?\d*)%', problem)
|
330 |
if percentages:
|
|
|
350 |
def generate_with_model(self, prompt: str) -> str:
|
351 |
"""Generate response using the SmolLM model"""
|
352 |
try:
|
353 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
354 |
+
|
355 |
+
# Move inputs to same device as model
|
356 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
357 |
+
|
358 |
+
with torch.no_grad():
|
359 |
+
outputs = model.generate(
|
360 |
+
**inputs,
|
361 |
+
max_new_tokens=256,
|
362 |
+
temperature=0.7,
|
363 |
+
do_sample=True,
|
364 |
+
pad_token_id=tokenizer.eos_token_id
|
365 |
+
)
|
366 |
+
|
367 |
+
# Decode only the new tokens
|
368 |
+
new_tokens = outputs[0][inputs['input_ids'].shape[1]:]
|
369 |
+
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
370 |
+
return response.strip()
|
371 |
+
|
372 |
except Exception as e:
|
373 |
print(f"Model generation failed: {e}")
|
374 |
return ""
|
|
|
377 |
"""Analyze question type and provide targeted solution"""
|
378 |
question_lower = question.lower()
|
379 |
|
380 |
+
# Handle reversed text
|
381 |
if "ecnetnes siht dnatsrednu uoy fi" in question_lower:
|
382 |
return decode_reversed_text(question)
|
383 |
|
384 |
+
# Handle YouTube links
|
385 |
if "youtube.com" in question or "youtu.be" in question:
|
386 |
url_match = re.search(r'https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)([a-zA-Z0-9_-]+)', question)
|
387 |
if url_match:
|
|
|
389 |
if "highest number" in question_lower and "bird species" in question_lower:
|
390 |
numbers = re.findall(r'BIRD_SPECIES_COUNT:\s*(\d+)', result)
|
391 |
if numbers:
|
392 |
+
return str(max([int(x) for x in numbers]))
|
393 |
return result
|
394 |
|
395 |
+
# Handle math problems
|
396 |
if any(term in question_lower for term in ["commutative", "operation", "table", "chess", "checkmate"]):
|
397 |
return solve_advanced_math(question)
|
398 |
|
399 |
+
# Handle knowledge questions
|
400 |
if any(term in question_lower for term in ["who", "what", "when", "where", "wikipedia", "article"]):
|
401 |
return get_wikipedia_info(question)
|
402 |
|
403 |
+
# Handle Olympics queries
|
404 |
if "olympics" in question_lower or "1928" in question:
|
405 |
return get_wikipedia_info("1928 Summer Olympics")
|
406 |
|
407 |
+
# Default to web search
|
408 |
return smart_web_search(question)
|
409 |
|
410 |
def solve(self, question: str) -> str:
|
411 |
"""Main solving method with fallback chain"""
|
412 |
print(f"Solving: {question[:80]}...")
|
413 |
|
414 |
+
# Try direct analysis first
|
415 |
try:
|
416 |
direct_result = self.analyze_and_solve(question)
|
417 |
if direct_result and len(str(direct_result).strip()) > 3:
|
|
|
419 |
except Exception as e:
|
420 |
print(f"Direct analysis failed: {e}")
|
421 |
|
422 |
+
# Try model generation
|
423 |
try:
|
424 |
time.sleep(2)
|
425 |
+
prompt = f"""Answer the following question concisely and accurately:
|
426 |
|
427 |
Question: {question}
|
428 |
|
429 |
+
Answer:"""
|
430 |
|
431 |
result = self.generate_with_model(prompt)
|
432 |
if result and len(str(result).strip()) > 3:
|
|
|
434 |
except Exception as e:
|
435 |
print(f"Model generation failed: {e}")
|
436 |
|
437 |
+
# Final fallback to web search
|
438 |
time.sleep(3)
|
439 |
return smart_web_search(question)
|
440 |
|
|
|
500 |
|
501 |
print(f"{status} Answer: {str(answer)[:100]}")
|
502 |
|
503 |
+
# Rate limiting
|
504 |
time.sleep(random.uniform(2, 4))
|
505 |
|
506 |
except Exception as e:
|
|
|
518 |
})
|
519 |
print(f"❌ Error: {e}")
|
520 |
|
521 |
+
# Submit results
|
522 |
space_id = os.getenv("SPACE_ID", "unknown")
|
523 |
submission = {
|
524 |
"username": username,
|
|
|
554 |
# --- Gradio Interface ---
|
555 |
with gr.Blocks(title="Optimized GAIA Agent", theme=gr.themes.Soft()) as demo:
|
556 |
gr.Markdown("# 🎯 Optimized GAIA Agent")
|
557 |
+
gr.Markdown("**SmolLM-135M-Instruct • Wikipedia Search • Pattern Recognition**")
|
558 |
|
559 |
with gr.Row():
|
560 |
gr.LoginButton()
|
|
|
579 |
if __name__ == "__main__":
|
580 |
print("🎯 Starting Optimized GAIA Agent...")
|
581 |
|
582 |
+
env_vars = ["SPACE_ID", "SERPER_API_KEY"]
|
583 |
for var in env_vars:
|
584 |
status = "✅" if os.getenv(var) else "⚠️"
|
585 |
print(f"{status} {var}")
|