Spaces:
Runtime error
Runtime error
Fix
Browse files
agent.py
CHANGED
|
@@ -2,13 +2,10 @@ import os
|
|
| 2 |
import json
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
|
| 5 |
-
# ---- Environment & Setup ----
|
| 6 |
load_dotenv()
|
| 7 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
| 8 |
-
|
| 9 |
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
| 10 |
|
| 11 |
-
# ---- Imports ----
|
| 12 |
from langgraph.graph import START, StateGraph, MessagesState
|
| 13 |
from langgraph.prebuilt import tools_condition, ToolNode
|
| 14 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
|
@@ -20,7 +17,7 @@ from langchain_core.messages import SystemMessage, HumanMessage
|
|
| 20 |
from langchain_core.tools import tool
|
| 21 |
from langchain.schema import Document
|
| 22 |
|
| 23 |
-
# ----
|
| 24 |
|
| 25 |
@tool
|
| 26 |
def multiply(a: int, b: int) -> int:
|
|
@@ -51,87 +48,58 @@ def modulus(a: int, b: int) -> int:
|
|
| 51 |
|
| 52 |
@tool
|
| 53 |
def wiki_search(query: str) -> str:
|
| 54 |
-
"""Search Wikipedia for the
|
| 55 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 56 |
formatted = "\n\n---\n\n".join(
|
| 57 |
-
[
|
| 58 |
-
|
| 59 |
-
for doc in search_docs
|
| 60 |
-
]
|
| 61 |
)
|
| 62 |
return {"wiki_results": formatted}
|
| 63 |
|
| 64 |
@tool
|
| 65 |
def web_search(query: str) -> str:
|
| 66 |
-
"""Search the web using Tavily
|
| 67 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 68 |
formatted = "\n\n---\n\n".join(
|
| 69 |
-
[
|
| 70 |
-
|
| 71 |
-
for doc in search_docs
|
| 72 |
-
]
|
| 73 |
)
|
| 74 |
return {"web_results": formatted}
|
| 75 |
|
| 76 |
@tool
|
| 77 |
def arvix_search(query: str) -> str:
|
| 78 |
-
"""Search Arxiv for
|
| 79 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 80 |
formatted = "\n\n---\n\n".join(
|
| 81 |
-
[
|
| 82 |
-
|
| 83 |
-
for doc in search_docs
|
| 84 |
-
]
|
| 85 |
)
|
| 86 |
return {"arvix_results": formatted}
|
| 87 |
|
| 88 |
-
|
| 89 |
-
def similar_question_search(query: str) -> str:
|
| 90 |
-
"""Searches for questions similar to the input query using a vector database."""
|
| 91 |
-
matched_docs = vector_store.similarity_search(query, 3)
|
| 92 |
-
formatted = "\n\n---\n\n".join(
|
| 93 |
-
[
|
| 94 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 95 |
-
for doc in matched_docs
|
| 96 |
-
]
|
| 97 |
-
)
|
| 98 |
-
return {"similar_questions": formatted}
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
# ---- Embedding & Vector Store ----
|
| 102 |
-
|
| 103 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 104 |
-
|
| 105 |
-
json_QA = []
|
| 106 |
-
with open('metadata.jsonl', 'r') as jsonl_file:
|
| 107 |
-
for line in jsonl_file:
|
| 108 |
-
json_QA.append(json.loads(line))
|
| 109 |
-
|
| 110 |
documents = [
|
| 111 |
Document(
|
| 112 |
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
|
| 113 |
metadata={"source": sample["task_id"]}
|
| 114 |
-
)
|
| 115 |
-
for sample in json_QA
|
| 116 |
]
|
| 117 |
-
|
| 118 |
vector_store = Chroma.from_documents(
|
| 119 |
documents=documents,
|
| 120 |
embedding=embeddings,
|
| 121 |
persist_directory="./chroma_db",
|
| 122 |
collection_name="my_collection"
|
| 123 |
)
|
| 124 |
-
vector_store.persist()
|
| 125 |
print("Documents inserted:", vector_store._collection.count())
|
| 126 |
|
| 127 |
@tool
|
| 128 |
def similar_question_search(query: str) -> str:
|
|
|
|
| 129 |
matched_docs = vector_store.similarity_search(query, 3)
|
| 130 |
formatted = "\n\n---\n\n".join(
|
| 131 |
-
[
|
| 132 |
-
|
| 133 |
-
for doc in matched_docs
|
| 134 |
-
]
|
| 135 |
)
|
| 136 |
return {"similar_questions": formatted}
|
| 137 |
|
|
@@ -143,17 +111,14 @@ Now, I will ask you a question. Report your thoughts, and finish your answer wit
|
|
| 143 |
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 144 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
|
| 145 |
"""
|
| 146 |
-
|
| 147 |
sys_msg = SystemMessage(content=system_prompt)
|
| 148 |
|
| 149 |
-
# ---- Tool List ----
|
| 150 |
-
|
| 151 |
tools = [
|
| 152 |
multiply, add, subtract, divide, modulus,
|
| 153 |
wiki_search, web_search, arvix_search, similar_question_search
|
| 154 |
]
|
| 155 |
|
| 156 |
-
# ---- Graph
|
| 157 |
|
| 158 |
def build_graph(provider: str = "huggingface"):
|
| 159 |
if provider == "huggingface":
|
|
|
|
| 2 |
import json
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
|
|
|
|
| 5 |
load_dotenv()
|
| 6 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
|
|
|
| 7 |
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
| 8 |
|
|
|
|
| 9 |
from langgraph.graph import START, StateGraph, MessagesState
|
| 10 |
from langgraph.prebuilt import tools_condition, ToolNode
|
| 11 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
|
|
|
| 17 |
from langchain_core.tools import tool
|
| 18 |
from langchain.schema import Document
|
| 19 |
|
| 20 |
+
# ---- Tool Definitions (with docstrings) ----
|
| 21 |
|
| 22 |
@tool
|
| 23 |
def multiply(a: int, b: int) -> int:
|
|
|
|
| 48 |
|
| 49 |
@tool
|
| 50 |
def wiki_search(query: str) -> str:
|
| 51 |
+
"""Search Wikipedia for the query and return text of up to 2 documents."""
|
| 52 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 53 |
formatted = "\n\n---\n\n".join(
|
| 54 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 55 |
+
for doc in search_docs
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
return {"wiki_results": formatted}
|
| 58 |
|
| 59 |
@tool
|
| 60 |
def web_search(query: str) -> str:
|
| 61 |
+
"""Search the web for the query using Tavily and return up to 3 results."""
|
| 62 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 63 |
formatted = "\n\n---\n\n".join(
|
| 64 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 65 |
+
for doc in search_docs
|
|
|
|
|
|
|
| 66 |
)
|
| 67 |
return {"web_results": formatted}
|
| 68 |
|
| 69 |
@tool
|
| 70 |
def arvix_search(query: str) -> str:
|
| 71 |
+
"""Search Arxiv for the query and return content from up to 3 papers."""
|
| 72 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 73 |
formatted = "\n\n---\n\n".join(
|
| 74 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 75 |
+
for doc in search_docs
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
return {"arvix_results": formatted}
|
| 78 |
|
| 79 |
+
# Build vector store once
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 81 |
+
json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
documents = [
|
| 83 |
Document(
|
| 84 |
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
|
| 85 |
metadata={"source": sample["task_id"]}
|
| 86 |
+
) for sample in json_QA
|
|
|
|
| 87 |
]
|
|
|
|
| 88 |
vector_store = Chroma.from_documents(
|
| 89 |
documents=documents,
|
| 90 |
embedding=embeddings,
|
| 91 |
persist_directory="./chroma_db",
|
| 92 |
collection_name="my_collection"
|
| 93 |
)
|
|
|
|
| 94 |
print("Documents inserted:", vector_store._collection.count())
|
| 95 |
|
| 96 |
@tool
|
| 97 |
def similar_question_search(query: str) -> str:
|
| 98 |
+
"""Search for questions similar to the input query using the vector store."""
|
| 99 |
matched_docs = vector_store.similarity_search(query, 3)
|
| 100 |
formatted = "\n\n---\n\n".join(
|
| 101 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 102 |
+
for doc in matched_docs
|
|
|
|
|
|
|
| 103 |
)
|
| 104 |
return {"similar_questions": formatted}
|
| 105 |
|
|
|
|
| 111 |
FINAL ANSWER: [YOUR FINAL ANSWER].
|
| 112 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
|
| 113 |
"""
|
|
|
|
| 114 |
sys_msg = SystemMessage(content=system_prompt)
|
| 115 |
|
|
|
|
|
|
|
| 116 |
tools = [
|
| 117 |
multiply, add, subtract, divide, modulus,
|
| 118 |
wiki_search, web_search, arvix_search, similar_question_search
|
| 119 |
]
|
| 120 |
|
| 121 |
+
# ---- Graph Builder ----
|
| 122 |
|
| 123 |
def build_graph(provider: str = "huggingface"):
|
| 124 |
if provider == "huggingface":
|