Spaces:
Runtime error
Runtime error
Fix
Browse files
agent.py
CHANGED
@@ -2,13 +2,10 @@ import os
|
|
2 |
import json
|
3 |
from dotenv import load_dotenv
|
4 |
|
5 |
-
# ---- Environment & Setup ----
|
6 |
load_dotenv()
|
7 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
8 |
-
|
9 |
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
10 |
|
11 |
-
# ---- Imports ----
|
12 |
from langgraph.graph import START, StateGraph, MessagesState
|
13 |
from langgraph.prebuilt import tools_condition, ToolNode
|
14 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
@@ -20,7 +17,7 @@ from langchain_core.messages import SystemMessage, HumanMessage
|
|
20 |
from langchain_core.tools import tool
|
21 |
from langchain.schema import Document
|
22 |
|
23 |
-
# ----
|
24 |
|
25 |
@tool
|
26 |
def multiply(a: int, b: int) -> int:
|
@@ -51,87 +48,58 @@ def modulus(a: int, b: int) -> int:
|
|
51 |
|
52 |
@tool
|
53 |
def wiki_search(query: str) -> str:
|
54 |
-
"""Search Wikipedia for the
|
55 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
56 |
formatted = "\n\n---\n\n".join(
|
57 |
-
[
|
58 |
-
|
59 |
-
for doc in search_docs
|
60 |
-
]
|
61 |
)
|
62 |
return {"wiki_results": formatted}
|
63 |
|
64 |
@tool
|
65 |
def web_search(query: str) -> str:
|
66 |
-
"""Search the web using Tavily
|
67 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
68 |
formatted = "\n\n---\n\n".join(
|
69 |
-
[
|
70 |
-
|
71 |
-
for doc in search_docs
|
72 |
-
]
|
73 |
)
|
74 |
return {"web_results": formatted}
|
75 |
|
76 |
@tool
|
77 |
def arvix_search(query: str) -> str:
|
78 |
-
"""Search Arxiv for
|
79 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
80 |
formatted = "\n\n---\n\n".join(
|
81 |
-
[
|
82 |
-
|
83 |
-
for doc in search_docs
|
84 |
-
]
|
85 |
)
|
86 |
return {"arvix_results": formatted}
|
87 |
|
88 |
-
|
89 |
-
def similar_question_search(query: str) -> str:
|
90 |
-
"""Searches for questions similar to the input query using a vector database."""
|
91 |
-
matched_docs = vector_store.similarity_search(query, 3)
|
92 |
-
formatted = "\n\n---\n\n".join(
|
93 |
-
[
|
94 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
95 |
-
for doc in matched_docs
|
96 |
-
]
|
97 |
-
)
|
98 |
-
return {"similar_questions": formatted}
|
99 |
-
|
100 |
-
|
101 |
-
# ---- Embedding & Vector Store ----
|
102 |
-
|
103 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
104 |
-
|
105 |
-
json_QA = []
|
106 |
-
with open('metadata.jsonl', 'r') as jsonl_file:
|
107 |
-
for line in jsonl_file:
|
108 |
-
json_QA.append(json.loads(line))
|
109 |
-
|
110 |
documents = [
|
111 |
Document(
|
112 |
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
|
113 |
metadata={"source": sample["task_id"]}
|
114 |
-
)
|
115 |
-
for sample in json_QA
|
116 |
]
|
117 |
-
|
118 |
vector_store = Chroma.from_documents(
|
119 |
documents=documents,
|
120 |
embedding=embeddings,
|
121 |
persist_directory="./chroma_db",
|
122 |
collection_name="my_collection"
|
123 |
)
|
124 |
-
vector_store.persist()
|
125 |
print("Documents inserted:", vector_store._collection.count())
|
126 |
|
127 |
@tool
|
128 |
def similar_question_search(query: str) -> str:
|
|
|
129 |
matched_docs = vector_store.similarity_search(query, 3)
|
130 |
formatted = "\n\n---\n\n".join(
|
131 |
-
[
|
132 |
-
|
133 |
-
for doc in matched_docs
|
134 |
-
]
|
135 |
)
|
136 |
return {"similar_questions": formatted}
|
137 |
|
@@ -143,17 +111,14 @@ Now, I will ask you a question. Report your thoughts, and finish your answer wit
|
|
143 |
FINAL ANSWER: [YOUR FINAL ANSWER].
|
144 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
|
145 |
"""
|
146 |
-
|
147 |
sys_msg = SystemMessage(content=system_prompt)
|
148 |
|
149 |
-
# ---- Tool List ----
|
150 |
-
|
151 |
tools = [
|
152 |
multiply, add, subtract, divide, modulus,
|
153 |
wiki_search, web_search, arvix_search, similar_question_search
|
154 |
]
|
155 |
|
156 |
-
# ---- Graph
|
157 |
|
158 |
def build_graph(provider: str = "huggingface"):
|
159 |
if provider == "huggingface":
|
|
|
2 |
import json
|
3 |
from dotenv import load_dotenv
|
4 |
|
|
|
5 |
load_dotenv()
|
6 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
|
|
7 |
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
|
8 |
|
|
|
9 |
from langgraph.graph import START, StateGraph, MessagesState
|
10 |
from langgraph.prebuilt import tools_condition, ToolNode
|
11 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
|
|
17 |
from langchain_core.tools import tool
|
18 |
from langchain.schema import Document
|
19 |
|
20 |
+
# ---- Tool Definitions (with docstrings) ----
|
21 |
|
22 |
@tool
|
23 |
def multiply(a: int, b: int) -> int:
|
|
|
48 |
|
49 |
@tool
|
50 |
def wiki_search(query: str) -> str:
|
51 |
+
"""Search Wikipedia for the query and return text of up to 2 documents."""
|
52 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
53 |
formatted = "\n\n---\n\n".join(
|
54 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
55 |
+
for doc in search_docs
|
|
|
|
|
56 |
)
|
57 |
return {"wiki_results": formatted}
|
58 |
|
59 |
@tool
|
60 |
def web_search(query: str) -> str:
|
61 |
+
"""Search the web for the query using Tavily and return up to 3 results."""
|
62 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
63 |
formatted = "\n\n---\n\n".join(
|
64 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
65 |
+
for doc in search_docs
|
|
|
|
|
66 |
)
|
67 |
return {"web_results": formatted}
|
68 |
|
69 |
@tool
|
70 |
def arvix_search(query: str) -> str:
|
71 |
+
"""Search Arxiv for the query and return content from up to 3 papers."""
|
72 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
73 |
formatted = "\n\n---\n\n".join(
|
74 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
75 |
+
for doc in search_docs
|
|
|
|
|
76 |
)
|
77 |
return {"arvix_results": formatted}
|
78 |
|
79 |
+
# Build vector store once
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
81 |
+
json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")]
|
|
|
|
|
|
|
|
|
|
|
82 |
documents = [
|
83 |
Document(
|
84 |
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}",
|
85 |
metadata={"source": sample["task_id"]}
|
86 |
+
) for sample in json_QA
|
|
|
87 |
]
|
|
|
88 |
vector_store = Chroma.from_documents(
|
89 |
documents=documents,
|
90 |
embedding=embeddings,
|
91 |
persist_directory="./chroma_db",
|
92 |
collection_name="my_collection"
|
93 |
)
|
|
|
94 |
print("Documents inserted:", vector_store._collection.count())
|
95 |
|
96 |
@tool
|
97 |
def similar_question_search(query: str) -> str:
|
98 |
+
"""Search for questions similar to the input query using the vector store."""
|
99 |
matched_docs = vector_store.similarity_search(query, 3)
|
100 |
formatted = "\n\n---\n\n".join(
|
101 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
102 |
+
for doc in matched_docs
|
|
|
|
|
103 |
)
|
104 |
return {"similar_questions": formatted}
|
105 |
|
|
|
111 |
FINAL ANSWER: [YOUR FINAL ANSWER].
|
112 |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings...
|
113 |
"""
|
|
|
114 |
sys_msg = SystemMessage(content=system_prompt)
|
115 |
|
|
|
|
|
116 |
tools = [
|
117 |
multiply, add, subtract, divide, modulus,
|
118 |
wiki_search, web_search, arvix_search, similar_question_search
|
119 |
]
|
120 |
|
121 |
+
# ---- Graph Builder ----
|
122 |
|
123 |
def build_graph(provider: str = "huggingface"):
|
124 |
if provider == "huggingface":
|