Spaces:
Runtime error
Runtime error
Fix
Browse files
app.py
CHANGED
@@ -8,142 +8,44 @@ import time
|
|
8 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, tool
|
9 |
from typing import Dict, Any, List, Optional
|
10 |
import base64
|
11 |
-
from io import BytesIO
|
12 |
-
from PIL import Image
|
13 |
-
import numpy as np
|
14 |
from urllib.parse import urlparse, parse_qs
|
15 |
-
import math
|
16 |
|
17 |
# --- Constants ---
|
18 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
19 |
|
20 |
-
# ---
|
21 |
|
22 |
@tool
|
23 |
-
def
|
24 |
"""
|
25 |
-
|
26 |
|
27 |
Args:
|
28 |
-
query: The search query string
|
29 |
-
num_results: Maximum number of results to return (default 10)
|
30 |
|
31 |
Returns:
|
32 |
-
|
33 |
"""
|
34 |
try:
|
35 |
-
# First try Serper API if available
|
36 |
-
api_key = os.getenv("SERPER_API_KEY")
|
37 |
-
if api_key:
|
38 |
-
url = "https://google.serper.dev/search"
|
39 |
-
payload = json.dumps({"q": query, "num": num_results})
|
40 |
-
headers = {
|
41 |
-
'X-API-KEY': api_key,
|
42 |
-
'Content-Type': 'application/json'
|
43 |
-
}
|
44 |
-
response = requests.post(url, headers=headers, data=payload, timeout=30)
|
45 |
-
|
46 |
-
if response.status_code == 200:
|
47 |
-
data = response.json()
|
48 |
-
results = []
|
49 |
-
|
50 |
-
# Process knowledge graph first
|
51 |
-
if 'knowledgeGraph' in data:
|
52 |
-
kg = data['knowledgeGraph']
|
53 |
-
results.append(f"KNOWLEDGE: {kg.get('title', '')} - {kg.get('description', '')}")
|
54 |
-
|
55 |
-
# Process organic results
|
56 |
-
if 'organic' in data:
|
57 |
-
for i, item in enumerate(data['organic'][:num_results]):
|
58 |
-
results.append(f"[{i+1}] {item.get('title', '')}\n{item.get('snippet', '')}\nURL: {item.get('link', '')}")
|
59 |
-
|
60 |
-
# Add answer box if available
|
61 |
-
if 'answerBox' in data:
|
62 |
-
ab = data['answerBox']
|
63 |
-
results.insert(0, f"ANSWER: {ab.get('answer', '')}")
|
64 |
-
|
65 |
-
return "\n\n".join(results) if results else "No Serper results found"
|
66 |
-
|
67 |
-
# Fallback to DuckDuckGo
|
68 |
ddg_tool = DuckDuckGoSearchTool()
|
69 |
-
|
70 |
-
|
71 |
-
except Exception as e:
|
72 |
-
# Final fallback
|
73 |
-
try:
|
74 |
-
ddg_tool = DuckDuckGoSearchTool()
|
75 |
-
return ddg_tool(query)
|
76 |
-
except:
|
77 |
-
return f"Search unavailable: {str(e)}"
|
78 |
-
|
79 |
-
@tool
|
80 |
-
def wikipedia_lookup(topic: str) -> str:
|
81 |
-
"""
|
82 |
-
Enhanced Wikipedia search and content extraction.
|
83 |
-
|
84 |
-
Args:
|
85 |
-
topic: The Wikipedia topic to search for
|
86 |
-
|
87 |
-
Returns:
|
88 |
-
Wikipedia article summary and relevant information
|
89 |
-
"""
|
90 |
-
try:
|
91 |
-
# Clean the topic
|
92 |
-
topic_clean = topic.replace(" ", "_").strip()
|
93 |
-
|
94 |
-
# Try direct page access first
|
95 |
-
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic_clean}"
|
96 |
-
response = requests.get(summary_url, timeout=15)
|
97 |
-
|
98 |
-
if response.status_code == 200:
|
99 |
-
data = response.json()
|
100 |
-
result = []
|
101 |
-
result.append(f"TITLE: {data.get('title', '')}")
|
102 |
-
result.append(f"EXTRACT: {data.get('extract', '')}")
|
103 |
-
|
104 |
-
if 'coordinates' in data:
|
105 |
-
coords = data['coordinates']
|
106 |
-
result.append(f"COORDINATES: {coords.get('lat', '')}, {coords.get('lon', '')}")
|
107 |
-
|
108 |
-
return "\n".join(result)
|
109 |
-
|
110 |
-
# Fallback to search API
|
111 |
-
search_url = "https://en.wikipedia.org/w/api.php"
|
112 |
-
search_params = {
|
113 |
-
"action": "query",
|
114 |
-
"format": "json",
|
115 |
-
"list": "search",
|
116 |
-
"srsearch": topic,
|
117 |
-
"srlimit": 5
|
118 |
-
}
|
119 |
-
|
120 |
-
search_response = requests.get(search_url, params=search_params, timeout=15)
|
121 |
-
search_data = search_response.json()
|
122 |
-
|
123 |
-
results = []
|
124 |
-
for item in search_data.get('query', {}).get('search', [])[:3]:
|
125 |
-
title = item['title']
|
126 |
-
snippet = re.sub(r'<[^>]+>', '', item['snippet']) # Remove HTML tags
|
127 |
-
results.append(f"TITLE: {title}\nSNIPPET: {snippet}")
|
128 |
-
|
129 |
-
return "\n\n".join(results) if results else "No Wikipedia results found"
|
130 |
-
|
131 |
except Exception as e:
|
132 |
-
return f"
|
133 |
|
134 |
@tool
|
135 |
-
def
|
136 |
"""
|
137 |
-
|
138 |
|
139 |
Args:
|
140 |
-
url:
|
141 |
|
142 |
Returns:
|
143 |
-
Video information
|
144 |
"""
|
145 |
try:
|
146 |
-
# Extract video ID
|
147 |
video_id = None
|
148 |
patterns = [
|
149 |
r'(?:v=|/)([0-9A-Za-z_-]{11}).*',
|
@@ -158,541 +60,346 @@ def youtube_video_analyzer(url: str) -> str:
|
|
158 |
break
|
159 |
|
160 |
if not video_id:
|
161 |
-
return "Invalid YouTube URL
|
162 |
|
163 |
-
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
if response.status_code == 200:
|
171 |
-
data = response.json()
|
172 |
-
results.append(f"TITLE: {data.get('title', '')}")
|
173 |
-
results.append(f"AUTHOR: {data.get('author_name', '')}")
|
174 |
-
results.append(f"PROVIDER: {data.get('provider_name', '')}")
|
175 |
-
except:
|
176 |
-
pass
|
177 |
-
|
178 |
-
# Method 2: Page scraping for additional info
|
179 |
-
try:
|
180 |
-
video_url = f"https://www.youtube.com/watch?v={video_id}"
|
181 |
-
headers = {
|
182 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
183 |
-
}
|
184 |
-
page_response = requests.get(video_url, headers=headers, timeout=20)
|
185 |
-
|
186 |
-
if page_response.status_code == 200:
|
187 |
-
content = page_response.text
|
188 |
-
|
189 |
-
# Extract view count
|
190 |
-
view_match = re.search(r'"viewCount":"(\d+)"', content)
|
191 |
-
if view_match:
|
192 |
-
views = int(view_match.group(1))
|
193 |
-
results.append(f"VIEWS: {views:,}")
|
194 |
-
|
195 |
-
# Extract description
|
196 |
-
desc_patterns = [
|
197 |
-
r'"description":{"simpleText":"([^"]+)"}',
|
198 |
-
r'"shortDescription":"([^"]+)"'
|
199 |
-
]
|
200 |
-
for pattern in desc_patterns:
|
201 |
-
desc_match = re.search(pattern, content)
|
202 |
-
if desc_match:
|
203 |
-
description = desc_match.group(1)[:500] # Limit length
|
204 |
-
results.append(f"DESCRIPTION: {description}")
|
205 |
-
break
|
206 |
-
|
207 |
-
# Look for bird-related content
|
208 |
-
if "bird" in content.lower():
|
209 |
-
bird_patterns = [
|
210 |
-
r'(\d+)\s+bird[s]?\s+species',
|
211 |
-
r'(\d+)\s+species\s+of\s+bird',
|
212 |
-
r'(\d+)\s+different\s+bird'
|
213 |
-
]
|
214 |
-
for pattern in bird_patterns:
|
215 |
-
matches = re.findall(pattern, content.lower())
|
216 |
-
if matches:
|
217 |
-
results.append(f"BIRD_SPECIES_COUNT: {', '.join(matches)}")
|
218 |
-
break
|
219 |
-
except:
|
220 |
-
pass
|
221 |
-
|
222 |
-
return "\n".join(results) if results else f"Could not extract information from video {video_id}"
|
223 |
|
224 |
except Exception as e:
|
225 |
-
return f"YouTube
|
226 |
|
227 |
@tool
|
228 |
-
def
|
229 |
"""
|
230 |
-
|
231 |
|
232 |
Args:
|
233 |
-
text:
|
234 |
-
operation: The operation to perform (reverse, analyze, extract_numbers, decode_reversed)
|
235 |
|
236 |
Returns:
|
237 |
-
|
238 |
"""
|
239 |
try:
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
words = text.split()
|
244 |
-
chars = len(text)
|
245 |
-
sentences = len(re.findall(r'[.!?]+', text))
|
246 |
-
return f"ANALYSIS: {len(words)} words, {chars} characters, {sentences} sentences"
|
247 |
-
elif operation == "extract_numbers":
|
248 |
-
numbers = re.findall(r'\b\d+\b', text)
|
249 |
-
return f"NUMBERS: {', '.join(numbers)}"
|
250 |
-
elif operation == "decode_reversed":
|
251 |
-
# Specifically for reversed sentence questions
|
252 |
reversed_text = text[::-1]
|
253 |
-
return reversed_text
|
254 |
-
else:
|
255 |
-
return f"TEXT_PROCESSED: {text[:200]}..."
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
except Exception as e:
|
258 |
-
return f"Text
|
259 |
|
260 |
@tool
|
261 |
-
def
|
262 |
"""
|
263 |
-
|
264 |
|
265 |
Args:
|
266 |
-
problem:
|
267 |
|
268 |
Returns:
|
269 |
-
Solution approach or
|
270 |
"""
|
271 |
try:
|
272 |
problem_lower = problem.lower()
|
273 |
|
274 |
-
#
|
275 |
-
if "commutative" in problem_lower
|
276 |
-
#
|
277 |
-
|
278 |
-
|
279 |
-
table_lines = [line for line in lines if '|' in line and 'a' in line]
|
280 |
-
|
281 |
-
if len(table_lines) >= 6: # Header + 5 rows
|
282 |
-
# Parse the operation table
|
283 |
-
elements = ['a', 'b', 'c', 'd', 'e']
|
284 |
-
table = {}
|
285 |
-
|
286 |
-
for i, line in enumerate(table_lines[1:]): # Skip header
|
287 |
-
if i < 5:
|
288 |
-
parts = line.split('|')
|
289 |
-
if len(parts) >= 6:
|
290 |
-
row_elem = parts[1].strip()
|
291 |
-
for j, elem in enumerate(elements):
|
292 |
-
if j + 2 < len(parts):
|
293 |
-
table[(row_elem, elem)] = parts[j + 2].strip()
|
294 |
-
|
295 |
-
# Check for non-commutativity
|
296 |
-
counter_examples = []
|
297 |
-
for a in elements:
|
298 |
-
for b in elements:
|
299 |
-
if a != b:
|
300 |
-
ab = table.get((a, b))
|
301 |
-
ba = table.get((b, a))
|
302 |
-
if ab and ba and ab != ba:
|
303 |
-
counter_examples.extend([a, b])
|
304 |
-
|
305 |
-
unique_counter_examples = sorted(list(set(counter_examples)))
|
306 |
-
return f"COUNTER_EXAMPLES: {', '.join(unique_counter_examples)}"
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
# Chess problems
|
315 |
elif "chess" in problem_lower:
|
316 |
-
return ""
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
return """NUMBER_THEORY: Use modular arithmetic
|
326 |
-
- Last digit: number % 10
|
327 |
-
- Digital patterns: look for cycles
|
328 |
-
- Divisibility rules apply"""
|
329 |
-
|
330 |
-
# Statistical problems
|
331 |
-
elif "average" in problem_lower or "mean" in problem_lower:
|
332 |
-
numbers = re.findall(r'-?\d+\.?\d*', problem)
|
333 |
-
if numbers:
|
334 |
-
nums = [float(n) for n in numbers]
|
335 |
-
avg = sum(nums) / len(nums)
|
336 |
-
return f"CALCULATION: Average of {numbers} = {avg}"
|
337 |
-
|
338 |
-
return f"MATH_PROBLEM: {problem[:200]}... (Need specific calculation method)"
|
339 |
|
340 |
except Exception as e:
|
341 |
return f"Math solver error: {str(e)}"
|
342 |
|
343 |
@tool
|
344 |
-
def
|
345 |
"""
|
346 |
-
|
347 |
|
348 |
Args:
|
349 |
-
|
350 |
-
domain: The domain to specialize in (olympics, music, sports, science, general)
|
351 |
|
352 |
Returns:
|
353 |
-
|
354 |
"""
|
355 |
try:
|
356 |
-
|
357 |
-
|
358 |
-
search_query = f"Olympics {query} official results statistics"
|
359 |
-
return advanced_web_search(search_query, 5)
|
360 |
-
|
361 |
-
elif domain == "music" or any(term in query.lower() for term in ["mercedes sosa", "album", "song"]):
|
362 |
-
# Music-specific search
|
363 |
-
search_query = f'"{query}" discography albums music'
|
364 |
-
return advanced_web_search(search_query, 5)
|
365 |
-
|
366 |
-
elif domain == "sports" or any(term in query.lower() for term in ["yankees", "baseball", "team"]):
|
367 |
-
# Sports statistics search
|
368 |
-
search_query = f"{query} statistics baseball-reference sports"
|
369 |
-
return advanced_web_search(search_query, 5)
|
370 |
-
|
371 |
-
elif domain == "science" or any(term in query.lower() for term in ["dinosaur", "species", "scientific"]):
|
372 |
-
# Scientific information search
|
373 |
-
search_query = f"{query} scientific classification research"
|
374 |
-
wiki_result = wikipedia_lookup(query)
|
375 |
-
web_result = advanced_web_search(search_query, 3)
|
376 |
-
return f"WIKIPEDIA: {wiki_result}\n\nWEB: {web_result}"
|
377 |
-
|
378 |
-
else:
|
379 |
-
return advanced_web_search(query, 5)
|
380 |
-
|
381 |
-
except Exception as e:
|
382 |
-
return f"Specialized lookup error: {str(e)}"
|
383 |
-
|
384 |
-
@tool
|
385 |
-
def reverse_text_handler(text: str) -> str:
|
386 |
-
"""
|
387 |
-
Handles reversed text questions specifically.
|
388 |
-
|
389 |
-
Args:
|
390 |
-
text: The text that may contain reversed content
|
391 |
-
|
392 |
-
Returns:
|
393 |
-
Decoded or processed text result
|
394 |
-
"""
|
395 |
-
try:
|
396 |
-
# Check if text contains reversed content
|
397 |
-
if "ecnetnes siht dnatsrednu uoy fi" in text.lower():
|
398 |
-
# Find the reversed part
|
399 |
-
reversed_part = text.split("?,")[0] if "?," in text else text.split("?")[0]
|
400 |
-
normal_text = reversed_part[::-1]
|
401 |
-
|
402 |
-
# Check for direction words
|
403 |
-
normal_lower = normal_text.lower()
|
404 |
-
if "left" in normal_lower:
|
405 |
-
return "right"
|
406 |
-
elif "right" in normal_lower:
|
407 |
-
return "left"
|
408 |
-
elif "up" in normal_lower:
|
409 |
-
return "down"
|
410 |
-
elif "down" in normal_lower:
|
411 |
-
return "up"
|
412 |
-
|
413 |
-
return normal_text
|
414 |
|
415 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
except Exception as e:
|
418 |
-
return f"
|
419 |
|
420 |
-
# ---
|
421 |
-
class
|
422 |
def __init__(self):
|
423 |
-
print("Initializing
|
424 |
|
425 |
-
#
|
426 |
self.tools = [
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
specialized_lookup,
|
433 |
-
reverse_text_handler
|
434 |
]
|
435 |
|
436 |
-
#
|
437 |
try:
|
438 |
-
ddg_tool = DuckDuckGoSearchTool()
|
439 |
-
self.tools.append(ddg_tool)
|
440 |
-
except:
|
441 |
-
print("Warning: DuckDuckGo tool not available")
|
442 |
-
|
443 |
-
# Initialize CodeAgent with enhanced configuration
|
444 |
-
try:
|
445 |
-
from smolagents import HfApiModel
|
446 |
-
model = HfApiModel(token=os.getenv("HUGGINGFACE_INFERENCE_TOKEN"))
|
447 |
-
|
448 |
self.agent = CodeAgent(
|
449 |
tools=self.tools,
|
450 |
-
|
451 |
-
additional_authorized_imports=["math", "re", "json", "urllib.parse"]
|
452 |
)
|
|
|
453 |
except Exception as e:
|
454 |
-
print(f"
|
455 |
self.agent = None
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
def analyze_question_type(self, question: str) -> str:
|
460 |
-
"""Analyze question type to determine the best approach"""
|
461 |
question_lower = question.lower()
|
462 |
|
|
|
|
|
|
|
|
|
|
|
463 |
if "youtube.com" in question or "youtu.be" in question:
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
elif any(math_term in question_lower for math_term in ["commutative", "operation", "chess", "checkmate"]):
|
468 |
-
return "mathematical"
|
469 |
-
elif any(olympics_term in question_lower for olympics_term in ["olympics", "olympic", "1928", "amsterdam"]):
|
470 |
-
return "olympics"
|
471 |
-
elif "mercedes sosa" in question_lower or "album" in question_lower:
|
472 |
-
return "music"
|
473 |
-
elif "dinosaur" in question_lower:
|
474 |
-
return "scientific"
|
475 |
-
elif "yankees" in question_lower or "baseball" in question_lower:
|
476 |
-
return "sports"
|
477 |
-
else:
|
478 |
-
return "general"
|
479 |
-
|
480 |
-
def solve_question(self, question: str) -> str:
|
481 |
-
"""Main question solving method with enhanced logic"""
|
482 |
-
try:
|
483 |
-
question_type = self.analyze_question_type(question)
|
484 |
-
print(f"Question type identified: {question_type}")
|
485 |
-
|
486 |
-
if question_type == "reversed_text":
|
487 |
-
return reverse_text_handler(question)
|
488 |
-
|
489 |
-
elif question_type == "youtube":
|
490 |
-
url_pattern = r'https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)([a-zA-Z0-9_-]+)'
|
491 |
-
url_match = re.search(url_pattern, question)
|
492 |
-
if url_match:
|
493 |
-
full_url = url_match.group(0)
|
494 |
-
return youtube_video_analyzer(full_url)
|
495 |
-
|
496 |
-
elif question_type == "mathematical":
|
497 |
-
return mathematical_solver(question)
|
498 |
-
|
499 |
-
elif question_type == "olympics":
|
500 |
-
return specialized_lookup(question, "olympics")
|
501 |
-
|
502 |
-
elif question_type == "music":
|
503 |
-
return specialized_lookup(question, "music")
|
504 |
-
|
505 |
-
elif question_type == "scientific":
|
506 |
-
return specialized_lookup(question, "science")
|
507 |
-
|
508 |
-
elif question_type == "sports":
|
509 |
-
return specialized_lookup(question, "sports")
|
510 |
-
|
511 |
-
else:
|
512 |
-
# General approach
|
513 |
-
web_result = advanced_web_search(question)
|
514 |
-
|
515 |
-
# For some questions, also try Wikipedia
|
516 |
-
if any(term in question.lower() for term in ["who", "what", "when", "where", "history"]):
|
517 |
-
wiki_result = wikipedia_lookup(question)
|
518 |
-
return f"WEB: {web_result}\n\nWIKI: {wiki_result}"
|
519 |
-
|
520 |
-
return web_result
|
521 |
-
|
522 |
-
except Exception as e:
|
523 |
-
print(f"Error in solve_question: {e}")
|
524 |
-
return advanced_web_search(question)
|
525 |
-
|
526 |
-
def __call__(self, question: str) -> str:
|
527 |
-
"""Main entry point for the agent"""
|
528 |
-
print(f"Processing question: {question[:100]}...")
|
529 |
|
530 |
-
#
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
|
|
|
|
537 |
|
538 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
if self.agent:
|
540 |
try:
|
541 |
-
|
|
|
|
|
542 |
except Exception as e:
|
543 |
print(f"CodeAgent failed: {e}")
|
544 |
|
545 |
-
# Final fallback
|
546 |
-
|
|
|
547 |
|
548 |
-
|
549 |
-
|
550 |
-
"""Enhanced version of run_and_submit_all with better error handling"""
|
551 |
if not profile:
|
552 |
-
return "Please
|
553 |
-
|
554 |
username = profile.username
|
555 |
-
print(f"User logged in: {username}")
|
556 |
-
|
557 |
api_url = DEFAULT_API_URL
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
# Initialize Enhanced Agent
|
562 |
try:
|
563 |
-
agent =
|
564 |
except Exception as e:
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
space_id = os.getenv("SPACE_ID", "unknown")
|
569 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
570 |
-
|
571 |
-
# Fetch Questions
|
572 |
try:
|
573 |
-
|
574 |
-
response = requests.get(questions_url, timeout=30)
|
575 |
response.raise_for_status()
|
576 |
-
|
577 |
-
|
578 |
-
if not questions_data:
|
579 |
-
return "No questions received from server.", None
|
580 |
-
|
581 |
-
print(f"Fetched {len(questions_data)} questions.")
|
582 |
except Exception as e:
|
583 |
-
return f"
|
584 |
-
|
585 |
-
# Process
|
586 |
-
|
587 |
-
|
588 |
-
successful_answers = 0
|
589 |
|
590 |
-
for i, item in enumerate(
|
591 |
task_id = item.get("task_id")
|
592 |
-
|
593 |
|
594 |
-
if not task_id or
|
595 |
continue
|
596 |
-
|
597 |
-
print(f"\
|
598 |
|
599 |
try:
|
600 |
start_time = time.time()
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
if submitted_answer and len(submitted_answer.strip()) > 2:
|
605 |
-
successful_answers += 1
|
606 |
-
print(f"β
Answer generated in {processing_time:.2f}s")
|
607 |
-
else:
|
608 |
-
submitted_answer = "Unable to generate answer"
|
609 |
-
print("β Failed to generate valid answer")
|
610 |
|
611 |
-
|
612 |
-
"task_id": task_id,
|
613 |
-
"submitted_answer":
|
614 |
})
|
615 |
|
616 |
-
|
617 |
-
"Task
|
618 |
-
"Question":
|
619 |
-
"Answer":
|
620 |
-
"Time": f"{
|
621 |
})
|
622 |
|
623 |
-
|
624 |
|
625 |
except Exception as e:
|
626 |
-
error_msg = f"
|
627 |
-
|
628 |
-
|
629 |
-
answers_payload.append({
|
630 |
"task_id": task_id,
|
631 |
"submitted_answer": error_msg
|
632 |
})
|
633 |
-
|
634 |
-
|
635 |
-
"
|
636 |
-
"Question": question_text[:100] + "...",
|
637 |
"Answer": error_msg,
|
638 |
"Time": "ERROR"
|
639 |
})
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
"username": username
|
646 |
-
"agent_code":
|
647 |
-
"answers":
|
648 |
}
|
649 |
-
|
650 |
try:
|
651 |
-
|
652 |
-
response = requests.post(submit_url, json=submission_data, timeout=120)
|
653 |
response.raise_for_status()
|
|
|
654 |
|
655 |
-
|
656 |
-
|
657 |
-
final_status = f"""π Submission Complete!
|
658 |
-
|
659 |
-
User: {result_data.get('username', username)}
|
660 |
-
Score: {result_data.get('score', 'N/A')}%
|
661 |
-
Correct: {result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}
|
662 |
-
Message: {result_data.get('message', 'Success')}
|
663 |
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
|
|
668 |
|
669 |
-
|
|
|
|
|
670 |
|
671 |
except Exception as e:
|
672 |
-
|
673 |
-
return error_status, pd.DataFrame(results_log)
|
674 |
-
|
675 |
-
# --- Simple Gradio Interface ---
|
676 |
-
with gr.Blocks(title="Enhanced GAIA Agent", theme=gr.themes.Soft()) as demo:
|
677 |
-
gr.Markdown("# π€ Enhanced GAIA Benchmark Agent")
|
678 |
-
gr.Markdown("Multi-tool agent with web search, Wikipedia, YouTube analysis, and specialized solvers")
|
679 |
|
|
|
|
|
|
|
|
|
|
|
680 |
with gr.Row():
|
681 |
gr.LoginButton()
|
682 |
-
|
683 |
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
|
689 |
if __name__ == "__main__":
|
690 |
-
print("π
|
691 |
-
|
692 |
-
# Environment check
|
693 |
-
env_vars = ["SPACE_HOST", "SPACE_ID", "SERPER_API_KEY", "HUGGINGFACE_INFERENCE_TOKEN"]
|
694 |
-
for var in env_vars:
|
695 |
-
status = "β
" if os.getenv(var) else "β"
|
696 |
-
print(f"{status} {var}")
|
697 |
-
|
698 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
8 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, tool
|
9 |
from typing import Dict, Any, List, Optional
|
10 |
import base64
|
|
|
|
|
|
|
11 |
from urllib.parse import urlparse, parse_qs
|
|
|
12 |
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
+
# --- Core Tools with Proper Error Handling ---
|
17 |
|
18 |
@tool
|
19 |
+
def web_search(query: str) -> str:
|
20 |
"""
|
21 |
+
Search the web using DuckDuckGo.
|
22 |
|
23 |
Args:
|
24 |
+
query: The search query string
|
|
|
25 |
|
26 |
Returns:
|
27 |
+
Search results as formatted text
|
28 |
"""
|
29 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
ddg_tool = DuckDuckGoSearchTool()
|
31 |
+
result = ddg_tool(query)
|
32 |
+
return result if result else "No search results found"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
except Exception as e:
|
34 |
+
return f"Search error: {str(e)}"
|
35 |
|
36 |
@tool
|
37 |
+
def extract_youtube_info(url: str) -> str:
|
38 |
"""
|
39 |
+
Extract basic information from YouTube video URL.
|
40 |
|
41 |
Args:
|
42 |
+
url: YouTube video URL
|
43 |
|
44 |
Returns:
|
45 |
+
Video information or error message
|
46 |
"""
|
47 |
try:
|
48 |
+
# Extract video ID
|
49 |
video_id = None
|
50 |
patterns = [
|
51 |
r'(?:v=|/)([0-9A-Za-z_-]{11}).*',
|
|
|
60 |
break
|
61 |
|
62 |
if not video_id:
|
63 |
+
return "Invalid YouTube URL"
|
64 |
|
65 |
+
# Try oEmbed API
|
66 |
+
oembed_url = f"https://www.youtube.com/oembed?url=https://www.youtube.com/watch?v={video_id}&format=json"
|
67 |
+
response = requests.get(oembed_url, timeout=10)
|
68 |
|
69 |
+
if response.status_code == 200:
|
70 |
+
data = response.json()
|
71 |
+
return f"Title: {data.get('title', 'Unknown')}\nAuthor: {data.get('author_name', 'Unknown')}"
|
72 |
+
|
73 |
+
return f"Could not extract info for video ID: {video_id}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
except Exception as e:
|
76 |
+
return f"YouTube extraction error: {str(e)}"
|
77 |
|
78 |
@tool
|
79 |
+
def reverse_text(text: str) -> str:
|
80 |
"""
|
81 |
+
Reverse text and handle reversed sentence questions.
|
82 |
|
83 |
Args:
|
84 |
+
text: Text to reverse or decode
|
|
|
85 |
|
86 |
Returns:
|
87 |
+
Reversed or decoded text
|
88 |
"""
|
89 |
try:
|
90 |
+
# Check for the specific reversed question pattern
|
91 |
+
if "ecnetnes siht dnatsrednu uoy fi" in text.lower():
|
92 |
+
# Reverse the text to understand it
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
reversed_text = text[::-1]
|
|
|
|
|
|
|
94 |
|
95 |
+
# Look for direction words in the reversed text
|
96 |
+
if "left" in reversed_text.lower():
|
97 |
+
return "right"
|
98 |
+
elif "right" in reversed_text.lower():
|
99 |
+
return "left"
|
100 |
+
elif "up" in reversed_text.lower():
|
101 |
+
return "down"
|
102 |
+
elif "down" in reversed_text.lower():
|
103 |
+
return "up"
|
104 |
+
|
105 |
+
return reversed_text
|
106 |
+
|
107 |
+
# Default behavior: just reverse
|
108 |
+
return text[::-1]
|
109 |
+
|
110 |
except Exception as e:
|
111 |
+
return f"Text reversal error: {str(e)}"
|
112 |
|
113 |
@tool
|
114 |
+
def solve_math_problem(problem: str) -> str:
|
115 |
"""
|
116 |
+
Solve mathematical problems with pattern recognition.
|
117 |
|
118 |
Args:
|
119 |
+
problem: Mathematical problem description
|
120 |
|
121 |
Returns:
|
122 |
+
Solution approach or answer
|
123 |
"""
|
124 |
try:
|
125 |
problem_lower = problem.lower()
|
126 |
|
127 |
+
# Check for commutativity problems
|
128 |
+
if "commutative" in problem_lower and "|" in problem:
|
129 |
+
# Parse operation table
|
130 |
+
lines = problem.split('\n')
|
131 |
+
table_lines = [line for line in lines if '|' in line and ('a' in line or 'b' in line)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
if len(table_lines) >= 6: # Header + 5 rows
|
134 |
+
elements = ['a', 'b', 'c', 'd', 'e']
|
135 |
+
table = {}
|
136 |
+
|
137 |
+
# Parse the table
|
138 |
+
for i, line in enumerate(table_lines[1:]): # Skip header
|
139 |
+
if i < 5:
|
140 |
+
parts = line.split('|')
|
141 |
+
if len(parts) >= 6:
|
142 |
+
row_elem = parts[1].strip()
|
143 |
+
for j, elem in enumerate(elements):
|
144 |
+
if j + 2 < len(parts):
|
145 |
+
table[(row_elem, elem)] = parts[j + 2].strip()
|
146 |
+
|
147 |
+
# Find non-commutative pairs
|
148 |
+
non_commutative = []
|
149 |
+
for a in elements:
|
150 |
+
for b in elements:
|
151 |
+
if a != b:
|
152 |
+
ab = table.get((a, b))
|
153 |
+
ba = table.get((b, a))
|
154 |
+
if ab and ba and ab != ba:
|
155 |
+
non_commutative.extend([a, b])
|
156 |
+
|
157 |
+
unique_elements = sorted(list(set(non_commutative)))
|
158 |
+
return ', '.join(unique_elements) if unique_elements else "Operation is commutative"
|
159 |
|
160 |
# Chess problems
|
161 |
elif "chess" in problem_lower:
|
162 |
+
return "Analyze chess position: Look for checks, captures, threats, and tactical motifs"
|
163 |
+
|
164 |
+
# Extract numbers for calculation
|
165 |
+
numbers = re.findall(r'-?\d+\.?\d*', problem)
|
166 |
+
if numbers and ("average" in problem_lower or "mean" in problem_lower):
|
167 |
+
nums = [float(n) for n in numbers]
|
168 |
+
return str(sum(nums) / len(nums))
|
169 |
+
|
170 |
+
return f"Math problem identified. Numbers found: {numbers}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
except Exception as e:
|
173 |
return f"Math solver error: {str(e)}"
|
174 |
|
175 |
@tool
|
176 |
+
def get_wikipedia_info(topic: str) -> str:
|
177 |
"""
|
178 |
+
Get information from Wikipedia.
|
179 |
|
180 |
Args:
|
181 |
+
topic: Wikipedia topic to search
|
|
|
182 |
|
183 |
Returns:
|
184 |
+
Wikipedia summary or search results
|
185 |
"""
|
186 |
try:
|
187 |
+
# Clean topic
|
188 |
+
topic_clean = topic.replace(" ", "_").strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
# Try direct page access
|
191 |
+
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic_clean}"
|
192 |
+
response = requests.get(summary_url, timeout=10)
|
193 |
+
|
194 |
+
if response.status_code == 200:
|
195 |
+
data = response.json()
|
196 |
+
title = data.get('title', '')
|
197 |
+
extract = data.get('extract', '')
|
198 |
+
return f"Title: {title}\nSummary: {extract}"
|
199 |
+
|
200 |
+
# Fallback to search
|
201 |
+
search_url = "https://en.wikipedia.org/w/api.php"
|
202 |
+
params = {
|
203 |
+
"action": "query",
|
204 |
+
"format": "json",
|
205 |
+
"list": "search",
|
206 |
+
"srsearch": topic,
|
207 |
+
"srlimit": 3
|
208 |
+
}
|
209 |
+
|
210 |
+
search_response = requests.get(search_url, params=params, timeout=10)
|
211 |
+
search_data = search_response.json()
|
212 |
+
|
213 |
+
results = []
|
214 |
+
for item in search_data.get('query', {}).get('search', []):
|
215 |
+
title = item['title']
|
216 |
+
snippet = re.sub(r'<[^>]+>', '', item['snippet'])
|
217 |
+
results.append(f"{title}: {snippet}")
|
218 |
+
|
219 |
+
return "\n".join(results) if results else "No Wikipedia results found"
|
220 |
|
221 |
except Exception as e:
|
222 |
+
return f"Wikipedia error: {str(e)}"
|
223 |
|
224 |
+
# --- Simplified Agent Class ---
|
225 |
+
class SimpleGAIAAgent:
|
226 |
def __init__(self):
|
227 |
+
print("Initializing Simple GAIA Agent...")
|
228 |
|
229 |
+
# Core tools only
|
230 |
self.tools = [
|
231 |
+
web_search,
|
232 |
+
extract_youtube_info,
|
233 |
+
reverse_text,
|
234 |
+
solve_math_problem,
|
235 |
+
get_wikipedia_info
|
|
|
|
|
236 |
]
|
237 |
|
238 |
+
# Initialize CodeAgent
|
239 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
self.agent = CodeAgent(
|
241 |
tools=self.tools,
|
242 |
+
additional_authorized_imports=["math", "re", "json"]
|
|
|
243 |
)
|
244 |
+
print("CodeAgent initialized successfully")
|
245 |
except Exception as e:
|
246 |
+
print(f"CodeAgent initialization failed: {e}")
|
247 |
self.agent = None
|
248 |
+
|
249 |
+
def quick_solve(self, question: str) -> str:
|
250 |
+
"""Quick pattern-based solving before using agent"""
|
|
|
|
|
251 |
question_lower = question.lower()
|
252 |
|
253 |
+
# Handle reversed text questions
|
254 |
+
if "ecnetnes siht dnatsrednu uoy fi" in question_lower:
|
255 |
+
return reverse_text(question)
|
256 |
+
|
257 |
+
# Handle YouTube questions
|
258 |
if "youtube.com" in question or "youtu.be" in question:
|
259 |
+
url_match = re.search(r'https?://(?:www\.)?(?:youtube\.com/watch\?v=|youtu\.be/)([a-zA-Z0-9_-]+)', question)
|
260 |
+
if url_match:
|
261 |
+
return extract_youtube_info(url_match.group(0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
# Handle math problems
|
264 |
+
if any(term in question_lower for term in ["commutative", "operation", "chess", "table"]):
|
265 |
+
return solve_math_problem(question)
|
266 |
+
|
267 |
+
return None
|
268 |
+
|
269 |
+
def solve(self, question: str) -> str:
|
270 |
+
"""Main solving method"""
|
271 |
+
print(f"Solving: {question[:100]}...")
|
272 |
|
273 |
+
# Try quick solve first
|
274 |
+
quick_result = self.quick_solve(question)
|
275 |
+
if quick_result:
|
276 |
+
print("Quick solve successful")
|
277 |
+
return quick_result
|
278 |
+
|
279 |
+
# Use CodeAgent if available
|
280 |
if self.agent:
|
281 |
try:
|
282 |
+
result = self.agent.run(question)
|
283 |
+
print("CodeAgent successful")
|
284 |
+
return result
|
285 |
except Exception as e:
|
286 |
print(f"CodeAgent failed: {e}")
|
287 |
|
288 |
+
# Final fallback to web search
|
289 |
+
print("Falling back to web search")
|
290 |
+
return web_search(question)
|
291 |
|
292 |
+
def run_evaluation(profile: gr.OAuthProfile | None):
|
293 |
+
"""Run evaluation with simplified processing"""
|
|
|
294 |
if not profile:
|
295 |
+
return "Please log in to Hugging Face first.", None
|
296 |
+
|
297 |
username = profile.username
|
|
|
|
|
298 |
api_url = DEFAULT_API_URL
|
299 |
+
|
300 |
+
# Initialize agent
|
|
|
|
|
301 |
try:
|
302 |
+
agent = SimpleGAIAAgent()
|
303 |
except Exception as e:
|
304 |
+
return f"Failed to initialize agent: {e}", None
|
305 |
+
|
306 |
+
# Get questions
|
|
|
|
|
|
|
|
|
307 |
try:
|
308 |
+
response = requests.get(f"{api_url}/questions", timeout=30)
|
|
|
309 |
response.raise_for_status()
|
310 |
+
questions = response.json()
|
311 |
+
print(f"Retrieved {len(questions)} questions")
|
|
|
|
|
|
|
|
|
312 |
except Exception as e:
|
313 |
+
return f"Failed to get questions: {e}", None
|
314 |
+
|
315 |
+
# Process questions
|
316 |
+
results = []
|
317 |
+
answers = []
|
|
|
318 |
|
319 |
+
for i, item in enumerate(questions):
|
320 |
task_id = item.get("task_id")
|
321 |
+
question = item.get("question")
|
322 |
|
323 |
+
if not task_id or not question:
|
324 |
continue
|
325 |
+
|
326 |
+
print(f"\nProcessing {i+1}/{len(questions)}: {task_id}")
|
327 |
|
328 |
try:
|
329 |
start_time = time.time()
|
330 |
+
answer = agent.solve(question)
|
331 |
+
duration = time.time() - start_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
|
333 |
+
answers.append({
|
334 |
+
"task_id": task_id,
|
335 |
+
"submitted_answer": answer
|
336 |
})
|
337 |
|
338 |
+
results.append({
|
339 |
+
"Task": task_id,
|
340 |
+
"Question": question[:80] + "...",
|
341 |
+
"Answer": str(answer)[:100] + "...",
|
342 |
+
"Time": f"{duration:.1f}s"
|
343 |
})
|
344 |
|
345 |
+
print(f"β
Completed in {duration:.1f}s")
|
346 |
|
347 |
except Exception as e:
|
348 |
+
error_msg = f"Error: {str(e)}"
|
349 |
+
answers.append({
|
|
|
|
|
350 |
"task_id": task_id,
|
351 |
"submitted_answer": error_msg
|
352 |
})
|
353 |
+
results.append({
|
354 |
+
"Task": task_id,
|
355 |
+
"Question": question[:80] + "...",
|
|
|
356 |
"Answer": error_msg,
|
357 |
"Time": "ERROR"
|
358 |
})
|
359 |
+
print(f"β Error: {e}")
|
360 |
+
|
361 |
+
# Submit results
|
362 |
+
space_id = os.getenv("SPACE_ID", "unknown")
|
363 |
+
submission = {
|
364 |
+
"username": username,
|
365 |
+
"agent_code": f"https://huggingface.co/spaces/{space_id}",
|
366 |
+
"answers": answers
|
367 |
}
|
368 |
+
|
369 |
try:
|
370 |
+
response = requests.post(f"{api_url}/submit", json=submission, timeout=60)
|
|
|
371 |
response.raise_for_status()
|
372 |
+
result = response.json()
|
373 |
|
374 |
+
status = f"""β
Evaluation Complete!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
+
User: {result.get('username', username)}
|
377 |
+
Score: {result.get('score', 'N/A')}%
|
378 |
+
Correct: {result.get('correct_count', '?')}/{result.get('total_attempted', '?')}
|
379 |
+
Questions Processed: {len(questions)}
|
380 |
+
Answers Submitted: {len(answers)}
|
381 |
|
382 |
+
{result.get('message', 'Submitted successfully')}"""
|
383 |
+
|
384 |
+
return status, pd.DataFrame(results)
|
385 |
|
386 |
except Exception as e:
|
387 |
+
return f"β Submission failed: {e}", pd.DataFrame(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
|
389 |
+
# --- Gradio Interface ---
|
390 |
+
with gr.Blocks(title="Simple GAIA Agent") as demo:
|
391 |
+
gr.Markdown("# π€ Simple GAIA Agent")
|
392 |
+
gr.Markdown("Focused on core functionality: web search, YouTube analysis, text processing, and math solving")
|
393 |
+
|
394 |
with gr.Row():
|
395 |
gr.LoginButton()
|
396 |
+
run_btn = gr.Button("π Run Evaluation", variant="primary")
|
397 |
|
398 |
+
status = gr.Textbox(label="Status", lines=15, interactive=False)
|
399 |
+
results_df = gr.DataFrame(label="Results", interactive=False)
|
400 |
+
|
401 |
+
run_btn.click(fn=run_evaluation, outputs=[status, results_df])
|
402 |
|
403 |
if __name__ == "__main__":
|
404 |
+
print("π Starting Simple GAIA Agent...")
|
405 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|