Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| from smolagents import CodeAgent, HfApiModel | |
| from smolagents.tools import DuckDuckGoSearchTool, PythonInterpreterTool | |
| import json | |
| import tempfile | |
| import urllib.parse | |
| from pathlib import Path | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Custom Tools --- | |
| class SerperSearchTool: | |
| """Enhanced search tool using Serper API for more reliable results""" | |
| name = "serper_search" | |
| description = "Search the web using Serper API. Use this for finding current information, facts, and data." | |
| def __init__(self): | |
| self.api_key = os.getenv("SERPER_API_KEY") | |
| if not self.api_key: | |
| print("Warning: SERPER_API_KEY not found, falling back to DuckDuckGo") | |
| def __call__(self, query: str) -> str: | |
| """Search the web and return formatted results""" | |
| if not self.api_key: | |
| # Fallback to basic search if no Serper API key | |
| return f"Search query: {query} - API key not available" | |
| try: | |
| url = "https://google.serper.dev/search" | |
| payload = json.dumps({ | |
| "q": query, | |
| "num": 5 | |
| }) | |
| headers = { | |
| 'X-API-KEY': self.api_key, | |
| 'Content-Type': 'application/json' | |
| } | |
| response = requests.post(url, headers=headers, data=payload, timeout=10) | |
| response.raise_for_status() | |
| data = response.json() | |
| results = [] | |
| # Process organic results | |
| if 'organic' in data: | |
| for item in data['organic'][:3]: # Top 3 results | |
| results.append(f"Title: {item.get('title', 'N/A')}") | |
| results.append(f"Content: {item.get('snippet', 'N/A')}") | |
| results.append(f"URL: {item.get('link', 'N/A')}") | |
| results.append("---") | |
| # Add answer box if available | |
| if 'answerBox' in data: | |
| answer = data['answerBox'] | |
| results.insert(0, f"Answer: {answer.get('answer', answer.get('snippet', 'N/A'))}") | |
| results.insert(1, "---") | |
| return "\n".join(results) if results else f"No results found for: {query}" | |
| except Exception as e: | |
| print(f"Serper search error: {e}") | |
| return f"Search error for '{query}': {str(e)}" | |
| class MathCalculatorTool: | |
| """Tool for mathematical calculations and computations""" | |
| name = "math_calculator" | |
| description = "Perform mathematical calculations, solve equations, and handle numerical computations." | |
| def __call__(self, expression: str) -> str: | |
| """Safely evaluate mathematical expressions""" | |
| try: | |
| # Import math functions for calculations | |
| import math | |
| import operator | |
| # Safe evaluation context | |
| safe_dict = { | |
| "abs": abs, "round": round, "min": min, "max": max, | |
| "sum": sum, "pow": pow, "sqrt": math.sqrt, | |
| "sin": math.sin, "cos": math.cos, "tan": math.tan, | |
| "log": math.log, "log10": math.log10, "exp": math.exp, | |
| "pi": math.pi, "e": math.e | |
| } | |
| # Clean the expression | |
| expression = expression.replace("^", "**") # Handle exponents | |
| result = eval(expression, {"__builtins__": {}}, safe_dict) | |
| return f"Result: {result}" | |
| except Exception as e: | |
| return f"Math calculation error: {str(e)}" | |
| class FileProcessorTool: | |
| """Tool for processing various file formats""" | |
| name = "file_processor" | |
| description = "Process and extract information from files (text, CSV, JSON, etc.)" | |
| def __call__(self, file_path: str, action: str = "read") -> str: | |
| """Process files based on action type""" | |
| try: | |
| if not os.path.exists(file_path): | |
| return f"File not found: {file_path}" | |
| file_ext = Path(file_path).suffix.lower() | |
| if file_ext in ['.txt', '.md']: | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| return f"File content ({len(content)} chars):\n{content[:1000]}..." | |
| elif file_ext == '.csv': | |
| import pandas as pd | |
| df = pd.read_csv(file_path) | |
| return f"CSV file with {len(df)} rows and {len(df.columns)} columns:\n{df.head().to_string()}" | |
| elif file_ext == '.json': | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| data = json.load(f) | |
| return f"JSON data:\n{json.dumps(data, indent=2)[:1000]}..." | |
| else: | |
| return f"Unsupported file type: {file_ext}" | |
| except Exception as e: | |
| return f"File processing error: {str(e)}" | |
| # --- Enhanced Agent Definition --- | |
| class GAIAAgent: | |
| def __init__(self): | |
| """Initialize the GAIA agent with tools and model""" | |
| print("Initializing GAIA Agent...") | |
| # Initialize model | |
| try: | |
| hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN") | |
| if not hf_token: | |
| print("Warning: HUGGINGFACE_INFERENCE_TOKEN not found") | |
| # Use a good model for reasoning | |
| model = HfApiModel( | |
| model_id="meta-llama/Llama-3.1-70B-Instruct", | |
| token=hf_token | |
| ) | |
| # Initialize tools | |
| self.tools = [ | |
| SerperSearchTool(), | |
| PythonInterpreterTool(), | |
| MathCalculatorTool(), | |
| FileProcessorTool(), | |
| DuckDuckGoSearchTool() # Backup search | |
| ] | |
| # Initialize the agent | |
| self.agent = CodeAgent( | |
| tools=self.tools, | |
| model=model, | |
| max_steps=10, | |
| verbosity_level=1 | |
| ) | |
| print("GAIA Agent initialized successfully with tools:", [tool.name for tool in self.tools]) | |
| except Exception as e: | |
| print(f"Error initializing GAIA Agent: {e}") | |
| # Fallback to basic setup | |
| try: | |
| model = HfApiModel(model_id="microsoft/DialoGPT-medium") | |
| self.agent = CodeAgent(tools=[PythonInterpreterTool()], model=model) | |
| print("Fallback agent initialized") | |
| except Exception as fallback_error: | |
| print(f"Fallback initialization failed: {fallback_error}") | |
| self.agent = None | |
| def __call__(self, question: str) -> str: | |
| """Process a question using the GAIA agent""" | |
| print(f"Processing question: {question[:100]}...") | |
| if not self.agent: | |
| return "Agent initialization failed. Please check your configuration." | |
| try: | |
| # Enhanced prompt for better reasoning | |
| enhanced_prompt = f""" | |
| You are an AI assistant designed to answer questions accurately and thoroughly. | |
| You have access to web search, Python interpreter, math calculator, and file processing tools. | |
| Question: {question} | |
| Please think step by step: | |
| 1. Analyze what type of question this is | |
| 2. Determine what tools or information you need | |
| 3. Use appropriate tools to gather information | |
| 4. Reason through the problem | |
| 5. Provide a clear, accurate answer | |
| If the question requires: | |
| - Current information or facts: Use search tools | |
| - Calculations: Use the math calculator or Python interpreter | |
| - File analysis: Use the file processor tool | |
| - Multi-step reasoning: Break it down systematically | |
| Answer:""" | |
| # Run the agent | |
| result = self.agent.run(enhanced_prompt) | |
| # Extract the final answer if it's structured | |
| if isinstance(result, dict) and 'output' in result: | |
| answer = result['output'] | |
| else: | |
| answer = str(result) | |
| # Clean up the answer | |
| if "Answer:" in answer: | |
| answer = answer.split("Answer:")[-1].strip() | |
| print(f"Agent response: {answer[:100]}...") | |
| return answer | |
| except Exception as e: | |
| error_msg = f"Error processing question: {str(e)}" | |
| print(error_msg) | |
| # Fallback to basic response | |
| try: | |
| basic_response = f"I encountered an error while processing this question: {question}. Error: {str(e)}" | |
| return basic_response | |
| except: | |
| return "Unable to process this question due to technical difficulties." | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the GAIA Agent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent | |
| try: | |
| agent = GAIAAgent() | |
| if not agent.agent: | |
| return "Failed to initialize GAIA Agent. Please check your tokens and try again.", None | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # Agent code URL | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local" | |
| print(f"Agent code: {agent_code}") | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run GAIA Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running GAIA agent on {len(questions_data)} questions...") | |
| for i, item in enumerate(questions_data): | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
| "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer | |
| }) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| error_answer = f"AGENT ERROR: {e}" | |
| answers_payload.append({"task_id": task_id, "submitted_answer": error_answer}) | |
| results_log.append({ | |
| "Task ID": task_id, | |
| "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
| "Submitted Answer": error_answer | |
| }) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface --- | |
| with gr.Blocks(title="GAIA Agent Evaluation") as demo: | |
| gr.Markdown("# GAIA Benchmark Agent Evaluation") | |
| gr.Markdown( | |
| """ | |
| **Enhanced GAIA Agent with Multiple Tools:** | |
| - ๐ Web Search (Serper API + DuckDuckGo fallback) | |
| - ๐ Python Interpreter for calculations | |
| - ๐งฎ Mathematical calculator | |
| - ๐ File processor for various formats | |
| - ๐ง Advanced reasoning with Llama-3.1-70B | |
| **Instructions:** | |
| 1. Make sure you have SERPER_API_KEY and HUGGINGFACE_INFERENCE_TOKEN set | |
| 2. Log in to your Hugging Face account | |
| 3. Click 'Run GAIA Evaluation' to start the benchmark | |
| **Target:** >40% accuracy on GAIA benchmark questions | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("๐ Run GAIA Evaluation & Submit", variant="primary") | |
| status_output = gr.Textbox( | |
| label="Evaluation Status & Results", | |
| lines=6, | |
| interactive=False, | |
| placeholder="Click the button above to start evaluation..." | |
| ) | |
| results_table = gr.DataFrame( | |
| label="Questions and Agent Responses", | |
| wrap=True, | |
| interactive=False | |
| ) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "="*50) | |
| print("๐ค GAIA Agent Evaluation System Starting") | |
| print("="*50) | |
| # Check environment variables | |
| serper_key = os.getenv("SERPER_API_KEY") | |
| hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN") | |
| space_id = os.getenv("SPACE_ID") | |
| print(f"โ SERPER_API_KEY: {'Found' if serper_key else 'Missing (will use fallback search)'}") | |
| print(f"โ HF_TOKEN: {'Found' if hf_token else 'Missing (required for model access)'}") | |
| print(f"โ SPACE_ID: {space_id if space_id else 'Not found (running locally)'}") | |
| if space_id: | |
| print(f"๐ Space URL: https://huggingface.co/spaces/{space_id}") | |
| print("="*50) | |
| print("๐ฏ Target: >40% accuracy on GAIA benchmark") | |
| print("๐ ๏ธ Tools: Search, Python, Math, File Processing") | |
| print("๐ง Model: Llama-3.1-70B-Instruct") | |
| print("="*50 + "\n") | |
| demo.launch(debug=True, share=False) |