Spaces:
Runtime error
Runtime error
Final_Assignment_Template\app.py | |
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from agent import build_graph | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized.") | |
self.graph = build_graph() | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# Wrap the question in a HumanMessage from langchain_core | |
messages = [HumanMessage(content=question)] | |
messages = self.graph.invoke({"messages": messages}) | |
answer = messages['messages'][-1].content | |
return answer[14:] | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |
Final_Assignment_Template\agent.py: | |
import os | |
import json | |
from dotenv import load_dotenv | |
from langchain_core.messages import HumanMessage | |
load_dotenv() | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN") | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition, ToolNode | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import Chroma | |
from langchain_core.messages import SystemMessage, HumanMessage | |
from langchain_core.tools import tool | |
from langchain.schema import Document | |
# ---- Tool Definitions (with docstrings) ---- | |
@tool | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two integers and return the result.""" | |
return a * b | |
@tool | |
def add(a: int, b: int) -> int: | |
"""Add two integers and return the result.""" | |
return a + b | |
@tool | |
def subtract(a: int, b: int) -> int: | |
"""Subtract second integer from the first and return the result.""" | |
return a - b | |
@tool | |
def divide(a: int, b: int) -> float: | |
"""Divide first integer by second and return the result as a float.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
@tool | |
def modulus(a: int, b: int) -> int: | |
"""Return the remainder when first integer is divided by second.""" | |
return a % b | |
@tool | |
def wiki_search(query: str) -> str: | |
"""Search Wikipedia for the query and return text of up to 2 documents.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted = "\n\n---\n\n".join( | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
) | |
return {"wiki_results": formatted} | |
@tool | |
def web_search(query: str) -> str: | |
"""Search the web for the query using Tavily and return up to 3 results.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted = "\n\n---\n\n".join( | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
) | |
return {"web_results": formatted} | |
@tool | |
def arvix_search(query: str) -> str: | |
"""Search Arxiv for the query and return content from up to 3 papers.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted = "\n\n---\n\n".join( | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
) | |
return {"arvix_results": formatted} | |
# Build vector store once | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")] | |
documents = [ | |
Document( | |
page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}", | |
metadata={"source": sample["task_id"]} | |
) for sample in json_QA | |
] | |
vector_store = Chroma.from_documents( | |
documents=documents, | |
embedding=embeddings, | |
persist_directory="./chroma_db", | |
collection_name="my_collection" | |
) | |
print("Documents inserted:", vector_store._collection.count()) | |
@tool | |
def similar_question_search(query: str) -> str: | |
"""Search for questions similar to the input query using the vector store.""" | |
matched_docs = vector_store.similarity_search(query, 3) | |
formatted = "\n\n---\n\n".join( | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in matched_docs | |
) | |
return {"similar_questions": formatted} | |
# ---- System Prompt ---- | |
system_prompt = """ | |
You are a helpful assistant tasked with answering questions using a set of tools. | |
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings... | |
""" | |
sys_msg = SystemMessage(content=system_prompt) | |
tools = [ | |
multiply, add, subtract, divide, modulus, | |
wiki_search, web_search, arvix_search, similar_question_search | |
] | |
# ---- Graph Builder ---- | |
def build_graph(provider: str = "huggingface"): | |
if provider == "huggingface": | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
repo_id="mosaicml/mpt-30b", | |
temperature=0, | |
huggingfacehub_api_token=hf_token | |
) | |
) | |
elif provider == "google": | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
else: | |
raise ValueError("Invalid provider: choose 'huggingface' or 'google'.") | |
llm_with_tools = llm.bind_tools(tools) | |
def assistant(state: MessagesState): | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
similar = vector_store.similarity_search(state["messages"][0].content) | |
if similar: | |
example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}") | |
return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
return {"messages": [sys_msg] + state["messages"]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
builder.add_edge(START, "retriever") | |
builder.add_edge("retriever", "assistant") | |
builder.add_conditional_edges("assistant", tools_condition) | |
builder.add_edge("tools", "assistant") | |
return builder.compile() | |
Final_Assignment_Template\metadata.jsonl: | |
Final_Assignment_Template\requirements.txt: | |
gradio | |
requests | |
langchain | |
langchain-community | |
langchain-core | |
langchain-google-genai | |
langchain-huggingface | |
langchain-groq | |
langchain-tavily | |
langchain-chroma | |
langgraph | |
sentence-transformers | |
huggingface_hub | |
supabase | |
arxiv | |
pymupdf | |
wikipedia | |
pgvector | |
python-dotenv | |
protobuf==3.20.3 | |
Final_Assignment_Template\system_prompt.txt: | |
You are a helpful assistant tasked with answering questions using a set of tools. | |
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: | |
FINAL ANSWER: [YOUR FINAL ANSWER]. | |
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. | |
Your answer should only start with "FINAL ANSWER: ", then follows with the answer. |