Spaces:
Runtime error
Runtime error
File size: 23,017 Bytes
574b6ca c913a81 d591a7a 086b425 dfcd4f6 c913a81 dfcd4f6 8c139ea dfcd4f6 757ebd9 d66e9b7 c913a81 d591a7a dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 aa6f3a8 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 aa6f3a8 dfcd4f6 aa6f3a8 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 d66e9b7 dfcd4f6 d66e9b7 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 d66e9b7 dfcd4f6 d66e9b7 dfcd4f6 d591a7a dfcd4f6 d591a7a dfcd4f6 d66e9b7 dfcd4f6 d591a7a dfcd4f6 c913a81 dfcd4f6 d66e9b7 dfcd4f6 d66e9b7 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 d66e9b7 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 eccf8e4 c913a81 aa6f3a8 d66e9b7 aa6f3a8 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 a39e119 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 8c139ea dfcd4f6 bbb34b9 c913a81 dfcd4f6 f96a820 dfcd4f6 d3c0517 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 e80aab9 dfcd4f6 aa6f3a8 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 7963312 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 7963312 dfcd4f6 c913a81 dfcd4f6 c913a81 aa6f3a8 d66e9b7 e80aab9 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import re
import time
from typing import List, Dict, Any, Optional
from datetime import datetime
import threading
import queue
from ctransformers import AutoModelForCausalLM
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class WebSearchTool:
"""Web search tool using Serper API for real-time information retrieval"""
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://google.serper.dev/search"
def search(self, query: str, num_results: int = 5) -> Dict[str, Any]:
"""Perform web search and return structured results"""
try:
headers = {
'X-API-KEY': self.api_key,
'Content-Type': 'application/json'
}
payload = {
'q': query,
'num': num_results,
'gl': 'us',
'hl': 'en'
}
response = requests.post(self.base_url, json=payload, headers=headers, timeout=10)
response.raise_for_status()
data = response.json()
# Extract and format results
results = []
if 'organic' in data:
for item in data['organic'][:num_results]:
results.append({
'title': item.get('title', ''),
'snippet': item.get('snippet', ''),
'link': item.get('link', ''),
'position': item.get('position', 0)
})
return {
'success': True,
'results': results,
'query': query,
'total_results': len(results)
}
except Exception as e:
logger.error(f"Web search error: {e}")
return {
'success': False,
'error': str(e),
'results': [],
'query': query,
'total_results': 0
}
class CalculatorTool:
"""Enhanced calculator tool for mathematical operations"""
def calculate(self, expression: str) -> Dict[str, Any]:
"""Safely evaluate mathematical expressions"""
try:
# Clean the expression
expression = expression.strip()
# Replace common mathematical functions
expression = expression.replace('^', '**') # Power operator
expression = re.sub(r'\b(\d+)x(\d+)\b', r'\1*\2', expression) # Handle multiplication like 5x3
# Allow only safe mathematical operations
allowed_chars = set('0123456789+-*/().,eE pi')
allowed_funcs = ['abs', 'round', 'min', 'max', 'sum', 'pow', 'sqrt']
# Basic safety check
if any(char.isalpha() and char not in 'pie' for char in expression):
# Check if it contains allowed function names
import math
safe_dict = {
"__builtins__": {},
"abs": abs, "round": round, "min": min, "max": max,
"sum": sum, "pow": pow, "sqrt": math.sqrt,
"pi": math.pi, "e": math.e,
"sin": math.sin, "cos": math.cos, "tan": math.tan,
"log": math.log, "log10": math.log10,
"exp": math.exp, "floor": math.floor, "ceil": math.ceil
}
result = eval(expression, safe_dict)
else:
result = eval(expression)
return {
'success': True,
'result': result,
'expression': expression
}
except Exception as e:
logger.error(f"Calculator error: {e}")
return {
'success': False,
'error': str(e),
'expression': expression,
'result': None
}
class LocalLLMManager:
"""Manages local quantized LLM for reasoning"""
def __init__(self):
self.model = None
self.model_loaded = False
self.load_lock = threading.Lock()
def load_model(self):
"""Load quantized model optimized for CPU inference"""
with self.load_lock:
if self.model_loaded:
return
try:
logger.info("Loading quantized model...")
# Use Phi-3-mini for better performance on CPU with limited resources
self.model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct-gguf",
model_file="Phi-3-mini-4k-instruct-q4.gguf",
model_type="phi3",
gpu_layers=0, # CPU only
context_length=3072, # Reduced context to save memory
max_new_tokens=512,
temperature=0.1,
top_p=0.9,
repetition_penalty=1.1
)
self.model_loaded = True
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {e}")
# Fallback to a smaller model if Phi-3 fails
try:
logger.info("Trying fallback model...")
self.model = AutoModelForCausalLM.from_pretrained(
"TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF",
model_file="tinyllama-1.1b-chat-v1.0.q4_k_m.gguf",
model_type="llama",
gpu_layers=0,
context_length=2048,
max_new_tokens=256
)
self.model_loaded = True
logger.info("Fallback model loaded successfully")
except Exception as e2:
logger.error(f"Fallback model also failed: {e2}")
raise
def generate(self, prompt: str, max_tokens: int = 256) -> str:
"""Generate response from local model"""
if not self.model_loaded:
self.load_model()
if not self.model:
return "Error: Model not available"
try:
# Format prompt for Phi-3
formatted_prompt = f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
response = self.model(
formatted_prompt,
max_new_tokens=min(max_tokens, 256), # Limit tokens for speed
temperature=0.1,
stop=["<|end|>", "<|user|>"]
)
# Clean response
response = response.replace(formatted_prompt, "").strip()
if "<|end|>" in response:
response = response.split("<|end|>")[0].strip()
return response
except Exception as e:
logger.error(f"Generation error: {e}")
return f"Error generating response: {e}"
class GAIAAgent:
"""Advanced GAIA agent with reasoning, tools, and multi-step problem solving"""
def __init__(self):
# Initialize tools
self.serper_api_key = os.getenv("SERPER_API_KEY")
if not self.serper_api_key:
logger.warning("SERPER_API_KEY not found. Web search will be disabled.")
self.web_search = None
else:
self.web_search = WebSearchTool(self.serper_api_key)
self.calculator = CalculatorTool()
self.llm = LocalLLMManager()
# Agent configuration
self.max_iterations = 5
self.max_reasoning_length = 1000
logger.info("GAIA Agent initialized")
def _identify_question_type(self, question: str) -> str:
"""Identify the type of question to determine approach"""
question_lower = question.lower()
if any(word in question_lower for word in ['calculate', 'compute', 'math', '+', '-', '*', '/', '=', 'sum', 'multiply', 'divide']):
return 'mathematical'
elif any(word in question_lower for word in ['current', 'latest', 'recent', 'today', 'now', '2024', '2025']):
return 'current_info'
elif any(word in question_lower for word in ['who', 'what', 'where', 'when', 'why', 'how']):
return 'factual'
elif any(word in question_lower for word in ['analyze', 'compare', 'explain', 'reason']):
return 'analytical'
else:
return 'general'
def _use_web_search(self, query: str) -> str:
"""Use web search tool and format results"""
if not self.web_search:
return "Web search not available (API key missing)"
results = self.web_search.search(query, num_results=3)
if not results['success']:
return f"Search failed: {results.get('error', 'Unknown error')}"
if not results['results']:
return "No search results found"
formatted_results = f"Search results for '{query}':\n"
for i, result in enumerate(results['results'], 1):
formatted_results += f"{i}. {result['title']}\n {result['snippet']}\n\n"
return formatted_results
def _use_calculator(self, expression: str) -> str:
"""Use calculator tool and format result"""
result = self.calculator.calculate(expression)
if result['success']:
return f"Calculation: {result['expression']} = {result['result']}"
else:
return f"Calculation error: {result['error']}"
def _generate_reasoning(self, question: str, context: str = "") -> str:
"""Generate reasoning step using local LLM"""
reasoning_prompt = f"""Question: {question}
Context: {context}
Think step by step about this question. Consider:
1. What information do I need?
2. What tools might help?
3. How should I approach this problem?
Provide a clear reasoning step:"""
try:
reasoning = self.llm.generate(reasoning_prompt, max_tokens=200)
return reasoning
except Exception as e:
logger.error(f"Reasoning generation error: {e}")
return "Unable to generate reasoning step"
def _generate_final_answer(self, question: str, context: str, reasoning_steps: List[str]) -> str:
"""Generate final answer using all available information"""
all_reasoning = "\n".join([f"Step {i+1}: {step}" for i, step in enumerate(reasoning_steps)])
answer_prompt = f"""Question: {question}
Context and Information:
{context}
Reasoning Steps:
{all_reasoning}
Based on all the information and reasoning above, provide a clear, concise, and accurate final answer to the question:"""
try:
answer = self.llm.generate(answer_prompt, max_tokens=200)
return answer.strip()
except Exception as e:
logger.error(f"Answer generation error: {e}")
return "Unable to generate final answer"
def __call__(self, question: str) -> str:
"""Main agent execution method"""
logger.info(f"Processing question: {question[:100]}...")
try:
# Initialize
context = ""
reasoning_steps = []
question_type = self._identify_question_type(question)
logger.info(f"Question type identified: {question_type}")
# Step 1: Initial reasoning
initial_reasoning = self._generate_reasoning(question)
reasoning_steps.append(initial_reasoning)
context += f"Initial reasoning: {initial_reasoning}\n\n"
# Step 2: Apply tools based on question type
if question_type == 'mathematical':
# Try to extract mathematical expressions
math_matches = re.findall(r'[\d\+\-\*/\(\)\.\s\^]+', question)
for match in math_matches:
if len(match.strip()) > 3: # Avoid single digits
calc_result = self._use_calculator(match.strip())
context += f"Calculation: {calc_result}\n"
elif question_type in ['current_info', 'factual']:
# Use web search for factual or current information
search_result = self._use_web_search(question)
context += f"Web search results: {search_result}\n"
# Step 3: Additional reasoning with context
if context:
additional_reasoning = self._generate_reasoning(question, context)
reasoning_steps.append(additional_reasoning)
context += f"Additional reasoning: {additional_reasoning}\n\n"
# Step 4: Generate final answer
final_answer = self._generate_final_answer(question, context, reasoning_steps)
logger.info(f"Generated answer: {final_answer[:100]}...")
return final_answer
except Exception as e:
logger.error(f"Agent execution error: {e}")
return f"Error processing question: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GAIA Agent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
print("Initializing GAIA Agent...")
agent = GAIAAgent()
print("GAIA Agent initialized successfully")
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Agent code link
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run GAIA Agent
results_log = []
answers_payload = []
print(f"Running GAIA agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
try:
start_time = time.time()
submitted_answer = agent(question_text)
processing_time = time.time() - start_time
print(f"Question {task_id} processed in {processing_time:.2f}s")
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer,
"Processing Time (s)": f"{processing_time:.2f}"
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
"Processing Time (s)": "Error"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Advanced GAIA Agent Features:**
- ๐ง Local quantized LLM for reasoning (Phi-3-mini optimized for CPU)
- ๐ Web search capabilities via Serper API
- ๐งฎ Mathematical calculation tools
- ๐ฏ Multi-step problem solving approach
- ๐ Optimized for 16GB RAM / 2 vCPU constraints
**Instructions:**
1. Ensure your SERPER_API_KEY environment variable is set for web search
2. Log in to your Hugging Face account using the button below
3. Click 'Run GAIA Evaluation' to start the comprehensive evaluation
**Note:** Initial model loading may take 1-2 minutes. Subsequent questions will be processed faster.
"""
)
gr.LoginButton()
run_button = gr.Button("๐ Run GAIA Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="๐ Evaluation Status & Results", lines=8, interactive=False)
results_table = gr.DataFrame(label="๐ Detailed Question Results", wrap=True)
# Add system info
with gr.Accordion("๐ง System Information", open=False):
gr.Markdown(f"""
- **Environment**: Hugging Face Space
- **Resources**: 16GB RAM, 2 vCPU
- **Model**: Phi-3-mini-4k-instruct (quantized)
- **Web Search**: {'โ
Enabled' if os.getenv('SERPER_API_KEY') else 'โ Disabled (no API key)'}
- **Calculator**: โ
Enabled
- **Timestamp**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S UTC')}
""")
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "="*70)
print("๐ GAIA AGENT EVALUATION SYSTEM STARTING")
print("="*70)
# Environment check
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
serper_key = os.getenv("SERPER_API_KEY")
if space_host:
print(f"โ
SPACE_HOST: {space_host}")
print(f" ๐ Runtime URL: https://{space_host}.hf.space")
else:
print("โน๏ธ Running locally (SPACE_HOST not found)")
if space_id:
print(f"โ
SPACE_ID: {space_id}")
print(f" ๐ Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("โน๏ธ SPACE_ID not found")
if serper_key:
print("โ
SERPER_API_KEY: Configured")
else:
print("โ ๏ธ SERPER_API_KEY: Not found - Web search will be disabled")
print("="*70)
print("๐ GAIA Agent Features:")
print(" ๐ง Local LLM reasoning")
print(" ๐ Web search integration")
print(" ๐งฎ Mathematical calculations")
print(" ๐ฏ Multi-step problem solving")
print("="*70 + "\n")
print("๐ฏ Launching GAIA Agent Evaluation Interface...")
demo.launch(debug=True, share=False) |