Spaces:
Runtime error
Runtime error
File size: 16,316 Bytes
82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 9ceeea7 82111b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
Final_Assignment_Template\app.py import os import gradio as gr import requests import inspect import pandas as pd from agent import build_graph # (Keep Constants as is) # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Basic Agent Definition --- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ class BasicAgent: def __init__(self): print("BasicAgent initialized.") self.graph = build_graph() def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") # Wrap the question in a HumanMessage from langchain_core messages = [HumanMessage(content=question)] messages = self.graph.invoke({"messages": messages}) answer = messages['messages'][-1].content return answer[14:] def run_and_submit_all( profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ # --- Determine HF Space Runtime URL and Repo URL --- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code if profile: username= f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # 1. Instantiate Agent ( modify this part to create your agent) try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) # 5. Submit print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except requests.exceptions.HTTPError as e: error_detail = f"Server responded with status {e.response.status_code}." try: error_json = e.response.json() error_detail += f" Detail: {error_json.get('detail', e.response.text)}" except requests.exceptions.JSONDecodeError: error_detail += f" Response: {e.response.text[:500]}" status_message = f"Submission Failed: {error_detail}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.Timeout: status_message = "Submission Failed: The request timed out." print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except requests.exceptions.RequestException as e: status_message = f"Submission Failed: Network error - {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df except Exception as e: status_message = f"An unexpected error occurred during submission: {e}" print(status_message) results_df = pd.DataFrame(results_log) return status_message, results_df # --- Build Gradio Interface using Blocks --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown( """ **Instructions:** 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. --- **Disclaimers:** Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. """ ) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) # Removed max_rows=10 from DataFrame constructor results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) # Check for SPACE_HOST and SPACE_ID at startup for information space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup if space_host_startup: print(f"✅ SPACE_HOST found: {space_host_startup}") print(f" Runtime URL should be: https://{space_host_startup}.hf.space") else: print("ℹ️ SPACE_HOST environment variable not found (running locally?).") if space_id_startup: # Print repo URLs if SPACE_ID is found print(f"✅ SPACE_ID found: {space_id_startup}") print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") else: print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface for Basic Agent Evaluation...") demo.launch(debug=True, share=False) Final_Assignment_Template\agent.py: import os import json from dotenv import load_dotenv from langchain_core.messages import HumanMessage load_dotenv() os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN") from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import Chroma from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.schema import Document # ---- Tool Definitions (with docstrings) ---- @tool def multiply(a: int, b: int) -> int: """Multiply two integers and return the result.""" return a * b @tool def add(a: int, b: int) -> int: """Add two integers and return the result.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract second integer from the first and return the result.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide first integer by second and return the result as a float.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Return the remainder when first integer is divided by second.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for the query and return text of up to 2 documents.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted = "\n\n---\n\n".join( f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs ) return {"wiki_results": formatted} @tool def web_search(query: str) -> str: """Search the web for the query using Tavily and return up to 3 results.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted = "\n\n---\n\n".join( f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' for doc in search_docs ) return {"web_results": formatted} @tool def arvix_search(query: str) -> str: """Search Arxiv for the query and return content from up to 3 papers.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted = "\n\n---\n\n".join( f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' for doc in search_docs ) return {"arvix_results": formatted} # Build vector store once embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") json_QA = [json.loads(line) for line in open("metadata.jsonl", "r")] documents = [ Document( page_content=f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}", metadata={"source": sample["task_id"]} ) for sample in json_QA ] vector_store = Chroma.from_documents( documents=documents, embedding=embeddings, persist_directory="./chroma_db", collection_name="my_collection" ) print("Documents inserted:", vector_store._collection.count()) @tool def similar_question_search(query: str) -> str: """Search for questions similar to the input query using the vector store.""" matched_docs = vector_store.similarity_search(query, 3) formatted = "\n\n---\n\n".join( f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' for doc in matched_docs ) return {"similar_questions": formatted} # ---- System Prompt ---- system_prompt = """ You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings... """ sys_msg = SystemMessage(content=system_prompt) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, similar_question_search ] # ---- Graph Builder ---- def build_graph(provider: str = "huggingface"): if provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id="mosaicml/mpt-30b", temperature=0, huggingfacehub_api_token=hf_token ) ) elif provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) else: raise ValueError("Invalid provider: choose 'huggingface' or 'google'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): similar = vector_store.similarity_search(state["messages"][0].content) if similar: example_msg = HumanMessage(content=f"Here is a similar question:\n\n{similar[0].page_content}") return {"messages": [sys_msg] + state["messages"] + [example_msg]} return {"messages": [sys_msg] + state["messages"]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() Final_Assignment_Template\metadata.jsonl: Final_Assignment_Template\requirements.txt: gradio requests langchain langchain-community langchain-core langchain-google-genai langchain-huggingface langchain-groq langchain-tavily langchain-chroma langgraph sentence-transformers huggingface_hub supabase arxiv pymupdf wikipedia pgvector python-dotenv protobuf==3.20.3 Final_Assignment_Template\system_prompt.txt: You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Your answer should only start with "FINAL ANSWER: ", then follows with the answer. |