Spaces:
Runtime error
Runtime error
File size: 7,391 Bytes
574b6ca cac5b18 cd4ed8b 791c663 396989b fdf6474 53f6050 fcf479d cd4ed8b c0dbb5d cd4ed8b c0dbb5d cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 22a9aed fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b 22a9aed cd4ed8b 791c663 cd4ed8b fdf6474 cd4ed8b fdf6474 2bbccd0 fdf6474 791c663 fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b 791c663 fdf6474 cd4ed8b 791c663 cd4ed8b 791c663 cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 53f6050 cd4ed8b 791c663 cd4ed8b 791c663 fdf6474 cd4ed8b fdf6474 cd4ed8b fdf6474 cd4ed8b 53f6050 cd4ed8b 791c663 fdf6474 cd4ed8b fdf6474 791c663 984a8c3 cd4ed8b 984a8c3 cd4ed8b 53f6050 cd4ed8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
# Initialize the search tool
search_tool = DuckDuckGoSearchTool()
# Initialize the model
model = InferenceClientModel()
# Create the agent
self.agent = CodeAgent(
model=model,
tools=[search_tool],
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response: {e}", None
except Exception as e:
print(f"Unexpected error: {e}")
return f"Unexpected error fetching questions: {e}", None
# Run Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# Submit Answers
print(f"Submitting to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"HTTP {e.response.status_code}: "
try:
error_json = e.response.json()
error_detail += f"{error_json.get('detail', e.response.text)}"
except:
error_detail += f"{e.response.text[:500]}"
print(error_detail)
return f"Submission Failed: {error_detail}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "Submission Failed: Request timed out.", pd.DataFrame(results_log)
except requests.exceptions.RequestException as e:
return f"Submission Failed: Network error - {e}", pd.DataFrame(results_log)
except Exception as e:
return f"Unexpected error during submission: {e}", pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and modify the code to define your agent's logic, tools, and dependencies.
2. Log in using the button below. Your Hugging Face username is required for submission.
3. Click 'Run Evaluation & Submit All Answers' to test your agent and get a score.
---
**Note:** The submission process may take time. You are encouraged to optimize your implementation.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
# --- Entry Point ---
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST: {space_host}")
print(f" Runtime URL: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST not found (running locally?).")
if space_id:
print(f"✅ SPACE_ID: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
print("ℹ️ SPACE_ID not found (running locally?).")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|