File size: 11,292 Bytes
a39e119
 
574b6ca
 
 
 
bf833c0
 
7963312
f96a820
757ebd9
e80aab9
3db6293
e80aab9
61f4b08
70fa272
 
 
d07ba5a
 
70fa272
d07ba5a
 
70fa272
d07ba5a
70fa272
 
 
 
 
 
 
 
f96a820
70fa272
f96a820
61f4b08
70fa272
 
 
bf833c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07ba5a
bf833c0
a39e119
7963312
bf833c0
 
 
 
 
 
 
7963312
a39e119
61f4b08
bf833c0
7963312
bf833c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7963312
f96a820
7963312
 
70fa272
61f4b08
70fa272
61f4b08
f96a820
a39e119
 
8f6825e
f96a820
 
31243f4
61f4b08
757ebd9
36ed51a
f96a820
eccf8e4
61f4b08
 
 
a39e119
61f4b08
70fa272
61f4b08
bf833c0
61f4b08
 
 
f96a820
bf833c0
 
61f4b08
 
bf833c0
31243f4
61f4b08
 
7963312
61f4b08
e80aab9
61f4b08
 
 
70fa272
f96a820
 
 
 
7963312
70fa272
7963312
61f4b08
7963312
61f4b08
7963312
f96a820
bf833c0
 
7963312
bf833c0
 
 
 
 
61f4b08
f96a820
61f4b08
e80aab9
 
f96a820
bf833c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# app.py

import os
import gradio as gr
import requests
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

from smolagents import CodeAgent, tool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Simple Web Search Tool ---
@tool
def simple_search(query: str) -> str:
    """
    Performs a DuckDuckGo search and returns the top 3 results.

    Args:
        query (str): The search query text.

    Returns:
        str: Titles and links of the top 3 search results.
    """
    try:
        resp = requests.get(
            "https://html.duckduckgo.com/html/",
            params={"q": query},
            timeout=10
        )
        resp.raise_for_status()
        from bs4 import BeautifulSoup
        soup = BeautifulSoup(resp.text, "html.parser")
        items = soup.select("a.result__a")[:3]
        return "\n\n".join(f"{a.get_text()}\n{a['href']}" for a in items) or "No results found."
    except Exception as e:
        return f"Search error: {e}"

# --- Wikipedia Search Tool ---
@tool
def wikipedia_search(query: str) -> str:
    """
    Searches Wikipedia for information.
    
    Args:
        query (str): The search query text.
    
    Returns:
        str: Wikipedia search results.
    """
    try:
        import wikipedia
        wikipedia.set_lang("en")
        results = wikipedia.search(query, results=3)
        if not results:
            return "No Wikipedia results found."
        
        summaries = []
        for title in results[:2]:  # Get top 2 results
            try:
                page = wikipedia.page(title)
                summary = wikipedia.summary(title, sentences=3)
                summaries.append(f"**{title}**\n{summary}\nURL: {page.url}")
            except:
                continue
        
        return "\n\n".join(summaries) if summaries else "No detailed results found."
    except Exception as e:
        return f"Wikipedia search error: {e}"

# --- Calculator Tool ---
@tool
def calculator(expression: str) -> str:
    """
    Evaluates mathematical expressions safely.
    
    Args:
        expression (str): Mathematical expression to evaluate.
    
    Returns:
        str: Result of the calculation.
    """
    try:
        # Basic safety check
        allowed_chars = set('0123456789+-*/.() ')
        if not all(c in allowed_chars for c in expression):
            return "Error: Invalid characters in expression"
        
        result = eval(expression)
        return str(result)
    except Exception as e:
        return f"Calculation error: {e}"

# --- Custom HuggingFace Model Wrapper ---
class HuggingFaceModel:
    def __init__(self, model_name="microsoft/DialoGPT-small"):
        """
        Initialize with a lightweight model that fits in 16GB RAM
        """
        print(f"Loading model: {model_name}")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        try:
            # Use a smaller, more efficient model
            self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                device_map="auto" if self.device == "cuda" else None,
                trust_remote_code=True
            )
            
            if self.device == "cpu":
                self.model = self.model.to(self.device)
                
            print(f"Model loaded successfully on {self.device}")
            
        except Exception as e:
            print(f"Error loading model: {e}")
            # Fallback to an even smaller model
            print("Falling back to distilgpt2...")
            self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
            self.tokenizer.pad_token = self.tokenizer.eos_token
            self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
            if self.device == "cuda":
                self.model = self.model.to(self.device)

    def generate(self, prompt: str, max_length: int = 512) -> str:
        """
        Generate text response from the model
        """
        try:
            # Encode the prompt
            inputs = self.tokenizer.encode(prompt, return_tensors="pt", truncate=True, max_length=400)
            if self.device == "cuda":
                inputs = inputs.to(self.device)
            
            # Generate response
            with torch.no_grad():
                outputs = self.model.generate(
                    inputs,
                    max_length=min(max_length, inputs.size(1) + 200),
                    num_return_sequences=1,
                    temperature=0.7,
                    do_sample=True,
                    pad_token_id=self.tokenizer.eos_token_id,
                    eos_token_id=self.tokenizer.eos_token_id,
                    attention_mask=torch.ones_like(inputs)
                )
            
            # Decode the response
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Extract only the new part (remove the input prompt)
            if response.startswith(prompt):
                response = response[len(prompt):].strip()
            
            return response if response else "I need more information to answer this question."
            
        except Exception as e:
            return f"Generation error: {e}"

# --- Simple Agent Implementation ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initializing with HuggingFace model...")
        self.model = HuggingFaceModel("microsoft/DialoGPT-medium")  # Changed to medium for better performance
        self.tools = {
            "search": simple_search,
            "wikipedia": wikipedia_search,
            "calculator": calculator
        }

    def __call__(self, question: str) -> str:
        print(f"Question: {question[:60]}...")
        
        try:
            # Simple logic to determine if we need tools
            question_lower = question.lower()
            
            # Check if it's a math question
            if any(word in question_lower for word in ['calculate', 'compute', 'math', '+', '-', '*', '/', 'sum', 'total']):
                # Try to extract mathematical expressions
                import re
                math_pattern = r'[\d\+\-\*/\.\(\)\s]+'
                math_matches = re.findall(math_pattern, question)
                if math_matches:
                    for match in math_matches:
                        if any(op in match for op in ['+', '-', '*', '/']):
                            calc_result = calculator(match.strip())
                            return f"The calculation result is: {calc_result}"
            
            # Check if it needs web search
            if any(word in question_lower for word in ['current', 'recent', 'latest', 'today', 'news', 'when', 'who', 'what']):
                # Try Wikipedia first for factual questions
                if any(word in question_lower for word in ['who is', 'what is', 'born', 'died', 'biography']):
                    wiki_result = wikipedia_search(question)
                    if "No Wikipedia results" not in wiki_result:
                        return wiki_result
                
                # Fall back to web search
                search_result = simple_search(question)
                if "No results found" not in search_result:
                    return search_result
            
            # For other questions, use the language model
            prompt = f"""Question: {question}

Please provide a clear and accurate answer. If you're not sure about something, say so.

Answer:"""
            
            response = self.model.generate(prompt, max_length=400)
            
            # If the response is too short or generic, try to enhance it
            if len(response.split()) < 5:
                enhanced_prompt = f"""You are a helpful assistant. Answer this question with specific details:

{question}

Provide a comprehensive answer:"""
                response = self.model.generate(enhanced_prompt, max_length=500)
            
            return response.strip() if response.strip() else "I need more information to answer this question properly."
            
        except Exception as e:
            return f"Agent error: {e}"

def run_and_submit_all(profile: gr.OAuthProfile | None):
    if not profile:
        return "Please log in to Hugging Face to submit answers.", None
    username = profile.username
    space_id = os.getenv("SPACE_ID", "")

    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Agent initialization failed: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        r = requests.get(questions_url, timeout=15)
        r.raise_for_status()
        questions = r.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    logs, answers = [], []
    for i, item in enumerate(questions):
        task_id = item.get("task_id")
        question = item.get("question")
        if not task_id or question is None:
            continue
            
        print(f"Processing question {i+1}/{len(questions)}: {task_id}")
        ans = agent(question)
        answers.append({"task_id": task_id, "submitted_answer": ans})
        logs.append({"Task ID": task_id, "Question": question[:100] + "..." if len(question) > 100 else question, "Submitted Answer": ans[:200] + "..." if len(ans) > 200 else ans})

    if not answers:
        return "Agent produced no answers.", pd.DataFrame(logs)

    payload = {"username": username, "agent_code": agent_code, "answers": answers}
    try:
        resp = requests.post(submit_url, json=payload, timeout=60)
        resp.raise_for_status()
        data = resp.json()
        status = (
            f"✅ Submission Successful!\n"
            f"Score: {data.get('score','N/A')}% "
            f"({data.get('correct_count','?')}/{data.get('total_attempted','?')})\n"
            f"{data.get('message','')}"
        )
        return status, pd.DataFrame(logs)
    except Exception as e:
        return f"Submission failed: {e}", pd.DataFrame(logs)

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# GAIA Agent Evaluation Runner")
    gr.Markdown("This agent uses HuggingFace models locally (no API calls) to answer GAIA benchmark questions.")
    
    gr.LoginButton()
    
    with gr.Row():
        run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
    
    status_box = gr.Textbox(label="Status / Submission Result", lines=8, interactive=False)
    result_table = gr.DataFrame(label="Questions & Agent Answers", wrap=True)

    run_button.click(run_and_submit_all, outputs=[status_box, result_table])

if __name__ == "__main__":
    print("Launching Gradio app...")
    demo.launch(debug=True, share=False)