File size: 12,200 Bytes
574b6ca
695f802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82111b7
695f802
 
 
 
 
d26735b
695f802
 
 
d26735b
695f802
 
 
 
 
 
82111b7
695f802
 
d26735b
695f802
 
 
 
 
 
 
 
 
 
 
 
 
 
d26735b
695f802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82111b7
695f802
 
 
 
 
 
 
 
 
 
82111b7
695f802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82111b7
695f802
 
 
 
7963312
d26735b
695f802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26735b
695f802
d26735b
695f802
e80aab9
695f802
 
82111b7
695f802
 
 
 
82111b7
695f802
 
 
 
 
 
 
82111b7
695f802
 
 
 
 
82111b7
695f802
 
 
 
 
 
82111b7
695f802
 
 
 
82111b7
695f802
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from agent import build_graph
from langchain_core.messages import HumanMessage
import time

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Improved Agent Definition ---
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        try:
            self.graph = build_graph()
            print("Graph built successfully.")
        except Exception as e:
            print(f"Error building graph: {e}")
            raise e
        
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 100 chars): {question[:100]}...")
        
        try:
            # Clean the question
            question = question.strip()
            
            # Wrap the question in a HumanMessage
            messages = [HumanMessage(content=question)]
            
            # Invoke the graph with retry mechanism
            max_retries = 3
            for attempt in range(max_retries):
                try:
                    result = self.graph.invoke({"messages": messages})
                    
                    if 'messages' in result and result['messages']:
                        answer = result['messages'][-1].content
                        
                        # Clean up the answer
                        if isinstance(answer, str):
                            # Remove the "FINAL ANSWER: " prefix if it exists
                            if "FINAL ANSWER:" in answer:
                                answer = answer.split("FINAL ANSWER:")[-1].strip()
                            
                            # Additional cleanup
                            answer = answer.replace("Assistant: ", "").strip()
                            
                            print(f"Agent answer (first 100 chars): {answer[:100]}...")
                            return answer
                        else:
                            return str(answer)
                    else:
                        return "No response generated"
                        
                except Exception as e:
                    print(f"Attempt {attempt + 1} failed: {e}")
                    if attempt == max_retries - 1:
                        return f"Error processing question: {str(e)}"
                    time.sleep(1)  # Brief pause before retry
            
        except Exception as e:
            print(f"Error in agent call: {e}")
            return f"Agent error: {str(e)}"


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent (modify this part to create your agent)
    try:
        print("Initializing agent...")
        agent = BasicAgent()
        print("Agent initialized successfully.")
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    # In the case of an app running as a Hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent with better error handling
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
        
        try:
            # Add timeout and better error handling for individual questions
            start_time = time.time()
            submitted_answer = agent(question_text)
            end_time = time.time()
            
            print(f"Question {i+1} completed in {end_time - start_time:.2f} seconds")
            
            # Validate the answer
            if not submitted_answer or submitted_answer.strip() == "":
                submitted_answer = "No answer generated"
            
            answers_payload.append({
                "task_id": task_id, 
                "submitted_answer": str(submitted_answer).strip()
            })
            
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:200] + "..." if len(question_text) > 200 else question_text, 
                "Submitted Answer": str(submitted_answer).strip()
            })
            
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             error_answer = f"AGENT ERROR: {str(e)}"
             answers_payload.append({
                 "task_id": task_id, 
                 "submitted_answer": error_answer
             })
             results_log.append({
                 "Task ID": task_id, 
                 "Question": question_text[:200] + "..." if len(question_text) > 200 else question_text, 
                 "Submitted Answer": error_answer
             })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {
        "username": username.strip(), 
        "agent_code": agent_code, 
        "answers": answers_payload
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit with better error handling
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username', 'Unknown')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        print(f"Score: {result_data.get('score', 'N/A')}%")
        
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
        
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Enhanced Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Please clone this space, then modify the code to define your agent's logic, tools, and necessary packages.
        2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        
        **Improvements in this version:**
        - Enhanced mathematical tools (factorial, gcd, lcm, compound interest, etc.)
        - Better search tools with error handling
        - Improved HuggingFace model integration
        - Better answer processing and cleanup
        - Enhanced error handling and retry mechanisms
        
        ---
        **Note:** The evaluation process may take some time as the agent processes all questions systematically.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " Enhanced App Starting " + "-"*30)
    
    # Check for environment variables
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")
    hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?).")
        
    if hf_token:
        print("✅ HUGGINGFACE_INFERENCE_TOKEN found")
    else:
        print("⚠️  HUGGINGFACE_INFERENCE_TOKEN not found - this may cause issues")

    print("-"*(60 + len(" Enhanced App Starting ")) + "\n")

    print("Launching Enhanced Gradio Interface for Agent Evaluation...")
    demo.launch(debug=True, share=False)