File size: 17,791 Bytes
574b6ca
cf03a81
574b6ca
 
c913a81
 
cf03a81
5696ad8
d591a7a
843728a
 
 
4678978
 
757ebd9
d66e9b7
c913a81
d591a7a
cf03a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4678978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
843728a
 
 
 
 
 
 
 
 
 
 
dfcd4f6
843728a
 
 
 
c913a81
 
843728a
 
 
 
 
dfcd4f6
 
 
 
aa6f3a8
843728a
dfcd4f6
 
 
 
843728a
dfcd4f6
4678978
843728a
 
 
 
dfcd4f6
843728a
 
 
 
 
 
4678978
c913a81
843728a
 
dfcd4f6
843728a
 
 
 
 
c913a81
843728a
dfcd4f6
c913a81
843728a
 
 
dfcd4f6
843728a
 
 
 
 
 
 
 
aa6f3a8
843728a
 
aa6f3a8
843728a
 
c913a81
 
843728a
dfcd4f6
843728a
 
c913a81
843728a
 
dfcd4f6
843728a
 
 
 
 
d66e9b7
843728a
c913a81
843728a
 
 
 
c913a81
843728a
 
 
 
dfcd4f6
843728a
 
 
 
c913a81
843728a
 
 
c913a81
843728a
dfcd4f6
843728a
dfcd4f6
 
843728a
 
dfcd4f6
843728a
dfcd4f6
843728a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfcd4f6
843728a
 
 
 
 
 
 
 
 
dfcd4f6
 
843728a
 
 
 
 
d66e9b7
 
843728a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c913a81
843728a
 
 
 
 
c913a81
843728a
 
 
dfcd4f6
843728a
 
d66e9b7
 
843728a
 
 
 
 
 
 
 
 
c913a81
 
 
dfcd4f6
c913a81
 
 
843728a
c913a81
 
 
 
 
 
 
 
 
 
 
 
dfcd4f6
c913a81
dfcd4f6
843728a
 
c913a81
dfcd4f6
c913a81
843728a
 
 
dfcd4f6
c913a81
 
 
eccf8e4
c913a81
aa6f3a8
d66e9b7
aa6f3a8
c913a81
 
dfcd4f6
c913a81
dfcd4f6
c913a81
 
dfcd4f6
c913a81
a39e119
dfcd4f6
c913a81
 
dfcd4f6
c913a81
 
dfcd4f6
8c139ea
dfcd4f6
bbb34b9
c913a81
 
dfcd4f6
f96a820
dfcd4f6
c913a81
843728a
c913a81
 
 
 
dfcd4f6
843728a
c913a81
 
dfcd4f6
843728a
 
c913a81
 
dfcd4f6
843728a
c913a81
 
 
dfcd4f6
c913a81
 
843728a
dfcd4f6
 
 
c913a81
 
dfcd4f6
e80aab9
843728a
aa6f3a8
c913a81
 
dfcd4f6
c913a81
 
 
 
 
dfcd4f6
c913a81
 
 
 
 
 
 
 
 
dfcd4f6
 
 
 
7963312
dfcd4f6
c913a81
 
 
 
843728a
dfcd4f6
843728a
c913a81
 
843728a
 
 
 
 
 
c913a81
 
843728a
 
 
c913a81
843728a
c913a81
 
7963312
dfcd4f6
c913a81
843728a
dfcd4f6
843728a
 
 
 
 
 
 
 
 
 
 
 
c913a81
 
 
aa6f3a8
d66e9b7
e80aab9
 
843728a
 
 
c913a81
843728a
dfcd4f6
843728a
 
 
 
 
 
 
c913a81
843728a
 
 
 
 
 
 
dfcd4f6
c913a81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import os
from transformers import pipeline
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent
from smolagents.tools import PythonInterpreterTool
import json
import tempfile
import urllib.parse
from pathlib import Path
from duckduckgo_search import DDGS


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"



class HfApiModel:
    """
    Simple wrapper for Hugging Face pipeline as a replacement for smolagents.HfApiModel
    """
    def __init__(self, model_id: str, token: str = None):
        self.model_id = model_id
        self.token = token or os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
        self.pipe = pipeline("text-generation", model=model_id, token=self.token)

    def __call__(self, prompt: str) -> str:
        outputs = self.pipe(prompt, max_new_tokens=512, do_sample=True)
        return outputs[0]["generated_text"]

class DuckDuckGoSearchTool:
    name = "duckduckgo_search"
    description = "Use DuckDuckGo to search the web."

    def __call__(self, query: str) -> str:
        try:
            results = []
            with DDGS() as ddgs:
                for r in ddgs.text(query, max_results=3):
                    results.append(f"Title: {r['title']}\nURL: {r['href']}\nSnippet: {r['body']}\n---")
            return "\n".join(results) if results else "No results found."
        except Exception as e:
            return f"Error using DuckDuckGoSearchTool: {e}"


# --- Custom Tools ---
class SerperSearchTool:
    """Enhanced search tool using Serper API for more reliable results"""
    
    name = "serper_search"
    description = "Search the web using Serper API. Use this for finding current information, facts, and data."
    
    def __init__(self):
        self.api_key = os.getenv("SERPER_API_KEY")
        if not self.api_key:
            print("Warning: SERPER_API_KEY not found, falling back to DuckDuckGo")
    
    def __call__(self, query: str) -> str:
        """Search the web and return formatted results"""
        if not self.api_key:
            return f"Search query: {query} - API key not available"
        
        try:
            url = "https://google.serper.dev/search"
            payload = json.dumps({
                "q": query,
                "num": 5
            })
            headers = {
                'X-API-KEY': self.api_key,
                'Content-Type': 'application/json'
            }
            
            response = requests.post(url, headers=headers, data=payload, timeout=10)
            response.raise_for_status()
            
            data = response.json()
            results = []
            
            if 'organic' in data:
                for item in data['organic'][:3]:
                    results.append(f"Title: {item.get('title', 'N/A')}")
                    results.append(f"Content: {item.get('snippet', 'N/A')}")
                    results.append(f"URL: {item.get('link', 'N/A')}")
                    results.append("---")
            
            if 'answerBox' in data:
                answer = data['answerBox']
                results.insert(0, f"Answer: {answer.get('answer', answer.get('snippet', 'N/A'))}")
                results.insert(1, "---")
            
            return "\n".join(results) if results else f"No results found for: {query}"
        
        except Exception as e:
            print(f"Serper search error: {e}")
            return f"Search error for '{query}': {str(e)}"

class MathCalculatorTool:
    """Tool for mathematical calculations and computations"""
    
    name = "math_calculator"
    description = "Perform mathematical calculations, solve equations, and handle numerical computations."
    
    def __call__(self, expression: str) -> str:
        """Safely evaluate mathematical expressions"""
        try:
            # Import math functions for calculations
            import math
            import operator
            
            # Safe evaluation context
            safe_dict = {
                "abs": abs, "round": round, "min": min, "max": max,
                "sum": sum, "pow": pow, "sqrt": math.sqrt,
                "sin": math.sin, "cos": math.cos, "tan": math.tan,
                "log": math.log, "log10": math.log10, "exp": math.exp,
                "pi": math.pi, "e": math.e
            }
            
            # Clean the expression
            expression = expression.replace("^", "**")  # Handle exponents
            
            result = eval(expression, {"__builtins__": {}}, safe_dict)
            return f"Result: {result}"
            
        except Exception as e:
            return f"Math calculation error: {str(e)}"

class FileProcessorTool:
    """Tool for processing various file formats"""
    
    name = "file_processor"
    description = "Process and extract information from files (text, CSV, JSON, etc.)"
    
    def __call__(self, file_path: str, action: str = "read") -> str:
        """Process files based on action type"""
        try:
            if not os.path.exists(file_path):
                return f"File not found: {file_path}"
            
            file_ext = Path(file_path).suffix.lower()
            
            if file_ext in ['.txt', '.md']:
                with open(file_path, 'r', encoding='utf-8') as f:
                    content = f.read()
                return f"File content ({len(content)} chars):\n{content[:1000]}..."
            
            elif file_ext == '.csv':
                import pandas as pd
                df = pd.read_csv(file_path)
                return f"CSV file with {len(df)} rows and {len(df.columns)} columns:\n{df.head().to_string()}"
            
            elif file_ext == '.json':
                with open(file_path, 'r', encoding='utf-8') as f:
                    data = json.load(f)
                return f"JSON data:\n{json.dumps(data, indent=2)[:1000]}..."
            
            else:
                return f"Unsupported file type: {file_ext}"
                
        except Exception as e:
            return f"File processing error: {str(e)}"

# --- Enhanced Agent Definition ---
class GAIAAgent:
    def __init__(self):
        """Initialize the GAIA agent with tools and model"""
        print("Initializing GAIA Agent...")
        
        # Initialize model
        try:
            hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
            if not hf_token:
                print("Warning: HUGGINGFACE_INFERENCE_TOKEN not found")
            
            # Use a good model for reasoning
            model = HfApiModel(
                model_id="meta-llama/Llama-3.1-70B-Instruct",
                token=hf_token
            )
            
            # Initialize tools
            self.tools = [
                SerperSearchTool(),
                PythonInterpreterTool(),
                MathCalculatorTool(),
                FileProcessorTool(),
                DuckDuckGoSearchTool()  # Backup search
            ]
            
            # Initialize the agent
            self.agent = CodeAgent(
                tools=self.tools,
                model=model,
                max_steps=10,
                verbosity_level=1
            )
            
            print("GAIA Agent initialized successfully with tools:", [tool.name for tool in self.tools])
            
        except Exception as e:
            print(f"Error initializing GAIA Agent: {e}")
            # Fallback to basic setup
            try:
                model = HfApiModel(model_id="microsoft/DialoGPT-medium")
                self.agent = CodeAgent(tools=[PythonInterpreterTool()], model=model)
                print("Fallback agent initialized")
            except Exception as fallback_error:
                print(f"Fallback initialization failed: {fallback_error}")
                self.agent = None
    
    def __call__(self, question: str) -> str:
        """Process a question using the GAIA agent"""
        print(f"Processing question: {question[:100]}...")
        
        if not self.agent:
            return "Agent initialization failed. Please check your configuration."
        
        try:
            # Enhanced prompt for better reasoning
            enhanced_prompt = f"""
You are an AI assistant designed to answer questions accurately and thoroughly. 
You have access to web search, Python interpreter, math calculator, and file processing tools.

Question: {question}

Please think step by step:
1. Analyze what type of question this is
2. Determine what tools or information you need
3. Use appropriate tools to gather information
4. Reason through the problem
5. Provide a clear, accurate answer

If the question requires:
- Current information or facts: Use search tools
- Calculations: Use the math calculator or Python interpreter  
- File analysis: Use the file processor tool
- Multi-step reasoning: Break it down systematically

Answer:"""

            # Run the agent
            result = self.agent.run(enhanced_prompt)
            
            # Extract the final answer if it's structured
            if isinstance(result, dict) and 'output' in result:
                answer = result['output']
            else:
                answer = str(result)
            
            # Clean up the answer
            if "Answer:" in answer:
                answer = answer.split("Answer:")[-1].strip()
            
            print(f"Agent response: {answer[:100]}...")
            return answer
            
        except Exception as e:
            error_msg = f"Error processing question: {str(e)}"
            print(error_msg)
            
            # Fallback to basic response
            try:
                basic_response = f"I encountered an error while processing this question: {question}. Error: {str(e)}"
                return basic_response
            except:
                return "Unable to process this question due to technical difficulties."

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the GAIA Agent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = GAIAAgent()
        if not agent.agent:
            return "Failed to initialize GAIA Agent. Please check your tokens and try again.", None
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # Agent code URL
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local"
    print(f"Agent code: {agent_code}")

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run GAIA Agent
    results_log = []
    answers_payload = []
    print(f"Running GAIA agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        
        try:
            print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
            })
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            error_answer = f"AGENT ERROR: {e}"
            answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Submitted Answer": error_answer
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)  # Increased timeout
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface ---
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
    gr.Markdown("# GAIA Benchmark Agent Evaluation")
    gr.Markdown(
        """
        **Enhanced GAIA Agent with Multiple Tools:**
        - ๐Ÿ” Web Search (Serper API + DuckDuckGo fallback)
        - ๐Ÿ Python Interpreter for calculations
        - ๐Ÿงฎ Mathematical calculator
        - ๐Ÿ“ File processor for various formats
        - ๐Ÿง  Advanced reasoning with Llama-3.1-70B
        
        **Instructions:**
        1. Make sure you have SERPER_API_KEY and HUGGINGFACE_INFERENCE_TOKEN set
        2. Log in to your Hugging Face account
        3. Click 'Run GAIA Evaluation' to start the benchmark
        
        **Target:** >40% accuracy on GAIA benchmark questions
        """
    )

    gr.LoginButton()

    run_button = gr.Button("๐Ÿš€ Run GAIA Evaluation & Submit", variant="primary")

    status_output = gr.Textbox(
        label="Evaluation Status & Results", 
        lines=6, 
        interactive=False,
        placeholder="Click the button above to start evaluation..."
    )
    
    results_table = gr.DataFrame(
        label="Questions and Agent Responses", 
        wrap=True,
        interactive=False
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "="*50)
    print("๐Ÿค– GAIA Agent Evaluation System Starting")
    print("="*50)
    
    # Check environment variables
    serper_key = os.getenv("SERPER_API_KEY")
    hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
    space_id = os.getenv("SPACE_ID")
    
    print(f"โœ… SERPER_API_KEY: {'Found' if serper_key else 'Missing (will use fallback search)'}")
    print(f"โœ… HF_TOKEN: {'Found' if hf_token else 'Missing (required for model access)'}")
    print(f"โœ… SPACE_ID: {space_id if space_id else 'Not found (running locally)'}")
    
    if space_id:
        print(f"๐Ÿ”— Space URL: https://huggingface.co/spaces/{space_id}")
    
    print("="*50)
    print("๐ŸŽฏ Target: >40% accuracy on GAIA benchmark")
    print("๐Ÿ› ๏ธ  Tools: Search, Python, Math, File Processing")
    print("๐Ÿง  Model: Llama-3.1-70B-Instruct")
    print("="*50 + "\n")

    demo.launch(debug=True, share=False)