Spaces:
Runtime error
Runtime error
File size: 17,791 Bytes
574b6ca cf03a81 574b6ca c913a81 cf03a81 5696ad8 d591a7a 843728a 4678978 757ebd9 d66e9b7 c913a81 d591a7a cf03a81 4678978 843728a dfcd4f6 843728a c913a81 843728a dfcd4f6 aa6f3a8 843728a dfcd4f6 843728a dfcd4f6 4678978 843728a dfcd4f6 843728a 4678978 c913a81 843728a dfcd4f6 843728a c913a81 843728a dfcd4f6 c913a81 843728a dfcd4f6 843728a aa6f3a8 843728a aa6f3a8 843728a c913a81 843728a dfcd4f6 843728a c913a81 843728a dfcd4f6 843728a d66e9b7 843728a c913a81 843728a c913a81 843728a dfcd4f6 843728a c913a81 843728a c913a81 843728a dfcd4f6 843728a dfcd4f6 843728a dfcd4f6 843728a dfcd4f6 843728a dfcd4f6 843728a dfcd4f6 843728a d66e9b7 843728a c913a81 843728a c913a81 843728a dfcd4f6 843728a d66e9b7 843728a c913a81 dfcd4f6 c913a81 843728a c913a81 dfcd4f6 c913a81 dfcd4f6 843728a c913a81 dfcd4f6 c913a81 843728a dfcd4f6 c913a81 eccf8e4 c913a81 aa6f3a8 d66e9b7 aa6f3a8 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 a39e119 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 8c139ea dfcd4f6 bbb34b9 c913a81 dfcd4f6 f96a820 dfcd4f6 c913a81 843728a c913a81 dfcd4f6 843728a c913a81 dfcd4f6 843728a c913a81 dfcd4f6 843728a c913a81 dfcd4f6 c913a81 843728a dfcd4f6 c913a81 dfcd4f6 e80aab9 843728a aa6f3a8 c913a81 dfcd4f6 c913a81 dfcd4f6 c913a81 dfcd4f6 7963312 dfcd4f6 c913a81 843728a dfcd4f6 843728a c913a81 843728a c913a81 843728a c913a81 843728a c913a81 7963312 dfcd4f6 c913a81 843728a dfcd4f6 843728a c913a81 aa6f3a8 d66e9b7 e80aab9 843728a c913a81 843728a dfcd4f6 843728a c913a81 843728a dfcd4f6 c913a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
import os
from transformers import pipeline
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent
from smolagents.tools import PythonInterpreterTool
import json
import tempfile
import urllib.parse
from pathlib import Path
from duckduckgo_search import DDGS
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class HfApiModel:
"""
Simple wrapper for Hugging Face pipeline as a replacement for smolagents.HfApiModel
"""
def __init__(self, model_id: str, token: str = None):
self.model_id = model_id
self.token = token or os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
self.pipe = pipeline("text-generation", model=model_id, token=self.token)
def __call__(self, prompt: str) -> str:
outputs = self.pipe(prompt, max_new_tokens=512, do_sample=True)
return outputs[0]["generated_text"]
class DuckDuckGoSearchTool:
name = "duckduckgo_search"
description = "Use DuckDuckGo to search the web."
def __call__(self, query: str) -> str:
try:
results = []
with DDGS() as ddgs:
for r in ddgs.text(query, max_results=3):
results.append(f"Title: {r['title']}\nURL: {r['href']}\nSnippet: {r['body']}\n---")
return "\n".join(results) if results else "No results found."
except Exception as e:
return f"Error using DuckDuckGoSearchTool: {e}"
# --- Custom Tools ---
class SerperSearchTool:
"""Enhanced search tool using Serper API for more reliable results"""
name = "serper_search"
description = "Search the web using Serper API. Use this for finding current information, facts, and data."
def __init__(self):
self.api_key = os.getenv("SERPER_API_KEY")
if not self.api_key:
print("Warning: SERPER_API_KEY not found, falling back to DuckDuckGo")
def __call__(self, query: str) -> str:
"""Search the web and return formatted results"""
if not self.api_key:
return f"Search query: {query} - API key not available"
try:
url = "https://google.serper.dev/search"
payload = json.dumps({
"q": query,
"num": 5
})
headers = {
'X-API-KEY': self.api_key,
'Content-Type': 'application/json'
}
response = requests.post(url, headers=headers, data=payload, timeout=10)
response.raise_for_status()
data = response.json()
results = []
if 'organic' in data:
for item in data['organic'][:3]:
results.append(f"Title: {item.get('title', 'N/A')}")
results.append(f"Content: {item.get('snippet', 'N/A')}")
results.append(f"URL: {item.get('link', 'N/A')}")
results.append("---")
if 'answerBox' in data:
answer = data['answerBox']
results.insert(0, f"Answer: {answer.get('answer', answer.get('snippet', 'N/A'))}")
results.insert(1, "---")
return "\n".join(results) if results else f"No results found for: {query}"
except Exception as e:
print(f"Serper search error: {e}")
return f"Search error for '{query}': {str(e)}"
class MathCalculatorTool:
"""Tool for mathematical calculations and computations"""
name = "math_calculator"
description = "Perform mathematical calculations, solve equations, and handle numerical computations."
def __call__(self, expression: str) -> str:
"""Safely evaluate mathematical expressions"""
try:
# Import math functions for calculations
import math
import operator
# Safe evaluation context
safe_dict = {
"abs": abs, "round": round, "min": min, "max": max,
"sum": sum, "pow": pow, "sqrt": math.sqrt,
"sin": math.sin, "cos": math.cos, "tan": math.tan,
"log": math.log, "log10": math.log10, "exp": math.exp,
"pi": math.pi, "e": math.e
}
# Clean the expression
expression = expression.replace("^", "**") # Handle exponents
result = eval(expression, {"__builtins__": {}}, safe_dict)
return f"Result: {result}"
except Exception as e:
return f"Math calculation error: {str(e)}"
class FileProcessorTool:
"""Tool for processing various file formats"""
name = "file_processor"
description = "Process and extract information from files (text, CSV, JSON, etc.)"
def __call__(self, file_path: str, action: str = "read") -> str:
"""Process files based on action type"""
try:
if not os.path.exists(file_path):
return f"File not found: {file_path}"
file_ext = Path(file_path).suffix.lower()
if file_ext in ['.txt', '.md']:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return f"File content ({len(content)} chars):\n{content[:1000]}..."
elif file_ext == '.csv':
import pandas as pd
df = pd.read_csv(file_path)
return f"CSV file with {len(df)} rows and {len(df.columns)} columns:\n{df.head().to_string()}"
elif file_ext == '.json':
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return f"JSON data:\n{json.dumps(data, indent=2)[:1000]}..."
else:
return f"Unsupported file type: {file_ext}"
except Exception as e:
return f"File processing error: {str(e)}"
# --- Enhanced Agent Definition ---
class GAIAAgent:
def __init__(self):
"""Initialize the GAIA agent with tools and model"""
print("Initializing GAIA Agent...")
# Initialize model
try:
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
if not hf_token:
print("Warning: HUGGINGFACE_INFERENCE_TOKEN not found")
# Use a good model for reasoning
model = HfApiModel(
model_id="meta-llama/Llama-3.1-70B-Instruct",
token=hf_token
)
# Initialize tools
self.tools = [
SerperSearchTool(),
PythonInterpreterTool(),
MathCalculatorTool(),
FileProcessorTool(),
DuckDuckGoSearchTool() # Backup search
]
# Initialize the agent
self.agent = CodeAgent(
tools=self.tools,
model=model,
max_steps=10,
verbosity_level=1
)
print("GAIA Agent initialized successfully with tools:", [tool.name for tool in self.tools])
except Exception as e:
print(f"Error initializing GAIA Agent: {e}")
# Fallback to basic setup
try:
model = HfApiModel(model_id="microsoft/DialoGPT-medium")
self.agent = CodeAgent(tools=[PythonInterpreterTool()], model=model)
print("Fallback agent initialized")
except Exception as fallback_error:
print(f"Fallback initialization failed: {fallback_error}")
self.agent = None
def __call__(self, question: str) -> str:
"""Process a question using the GAIA agent"""
print(f"Processing question: {question[:100]}...")
if not self.agent:
return "Agent initialization failed. Please check your configuration."
try:
# Enhanced prompt for better reasoning
enhanced_prompt = f"""
You are an AI assistant designed to answer questions accurately and thoroughly.
You have access to web search, Python interpreter, math calculator, and file processing tools.
Question: {question}
Please think step by step:
1. Analyze what type of question this is
2. Determine what tools or information you need
3. Use appropriate tools to gather information
4. Reason through the problem
5. Provide a clear, accurate answer
If the question requires:
- Current information or facts: Use search tools
- Calculations: Use the math calculator or Python interpreter
- File analysis: Use the file processor tool
- Multi-step reasoning: Break it down systematically
Answer:"""
# Run the agent
result = self.agent.run(enhanced_prompt)
# Extract the final answer if it's structured
if isinstance(result, dict) and 'output' in result:
answer = result['output']
else:
answer = str(result)
# Clean up the answer
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
print(f"Agent response: {answer[:100]}...")
return answer
except Exception as e:
error_msg = f"Error processing question: {str(e)}"
print(error_msg)
# Fallback to basic response
try:
basic_response = f"I encountered an error while processing this question: {question}. Error: {str(e)}"
return basic_response
except:
return "Unable to process this question due to technical difficulties."
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GAIA Agent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = GAIAAgent()
if not agent.agent:
return "Failed to initialize GAIA Agent. Please check your tokens and try again.", None
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Agent code URL
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local"
print(f"Agent code: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run GAIA Agent
results_log = []
answers_payload = []
print(f"Running GAIA agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
error_answer = f"AGENT ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_answer
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface ---
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
gr.Markdown("# GAIA Benchmark Agent Evaluation")
gr.Markdown(
"""
**Enhanced GAIA Agent with Multiple Tools:**
- ๐ Web Search (Serper API + DuckDuckGo fallback)
- ๐ Python Interpreter for calculations
- ๐งฎ Mathematical calculator
- ๐ File processor for various formats
- ๐ง Advanced reasoning with Llama-3.1-70B
**Instructions:**
1. Make sure you have SERPER_API_KEY and HUGGINGFACE_INFERENCE_TOKEN set
2. Log in to your Hugging Face account
3. Click 'Run GAIA Evaluation' to start the benchmark
**Target:** >40% accuracy on GAIA benchmark questions
"""
)
gr.LoginButton()
run_button = gr.Button("๐ Run GAIA Evaluation & Submit", variant="primary")
status_output = gr.Textbox(
label="Evaluation Status & Results",
lines=6,
interactive=False,
placeholder="Click the button above to start evaluation..."
)
results_table = gr.DataFrame(
label="Questions and Agent Responses",
wrap=True,
interactive=False
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "="*50)
print("๐ค GAIA Agent Evaluation System Starting")
print("="*50)
# Check environment variables
serper_key = os.getenv("SERPER_API_KEY")
hf_token = os.getenv("HUGGINGFACE_INFERENCE_TOKEN")
space_id = os.getenv("SPACE_ID")
print(f"โ
SERPER_API_KEY: {'Found' if serper_key else 'Missing (will use fallback search)'}")
print(f"โ
HF_TOKEN: {'Found' if hf_token else 'Missing (required for model access)'}")
print(f"โ
SPACE_ID: {space_id if space_id else 'Not found (running locally)'}")
if space_id:
print(f"๐ Space URL: https://huggingface.co/spaces/{space_id}")
print("="*50)
print("๐ฏ Target: >40% accuracy on GAIA benchmark")
print("๐ ๏ธ Tools: Search, Python, Math, File Processing")
print("๐ง Model: Llama-3.1-70B-Instruct")
print("="*50 + "\n")
demo.launch(debug=True, share=False) |