Spaces:
Sleeping
Sleeping
Upload Step5_Marker_Threshold_Classification.py
Browse files
Step5_Marker_Threshold_Classification.py
ADDED
@@ -0,0 +1,1508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
# # IV. MARKERS TRESHOLDS NOTEBOOK
|
4 |
+
# ## IV.1. PACKAGES IMPORT
|
5 |
+
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import re
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
import seaborn as sb
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import matplotlib.colors as mplc
|
14 |
+
import subprocess
|
15 |
+
import warnings
|
16 |
+
import panel as pn
|
17 |
+
import json
|
18 |
+
from scipy import signal
|
19 |
+
from scipy.stats import pearsonr
|
20 |
+
import plotly.figure_factory as ff
|
21 |
+
import plotly
|
22 |
+
import plotly.graph_objs as go
|
23 |
+
from plotly.subplots import make_subplots
|
24 |
+
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
|
25 |
+
import plotly.express as px
|
26 |
+
import sys
|
27 |
+
sys.setrecursionlimit(5000)
|
28 |
+
from my_modules import *
|
29 |
+
#Silence FutureWarnings & UserWarnings
|
30 |
+
warnings.filterwarnings('ignore', category= FutureWarning)
|
31 |
+
warnings.filterwarnings('ignore', category= UserWarning)
|
32 |
+
|
33 |
+
|
34 |
+
# ## IV.2. *DIRECTORIES
|
35 |
+
# Set base directory
|
36 |
+
#input_path = '/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431'
|
37 |
+
#set_path = 'test'
|
38 |
+
present_dir = os.path.dirname(os.path.realpath(__file__))
|
39 |
+
stored_variables_path = os.path.join(present_dir,'stored_variables.json')
|
40 |
+
with open(stored_variables_path, 'r') as file:
|
41 |
+
stored_vars = json.load(file)
|
42 |
+
directory = stored_vars['base_dir']
|
43 |
+
input_path = os.path.join(present_dir,directory)
|
44 |
+
set_path = stored_vars['set_path']
|
45 |
+
selected_metadata_files = stored_vars['selected_metadata_files']
|
46 |
+
ls_samples = stored_vars['ls_samples']
|
47 |
+
base_dir = input_path
|
48 |
+
set_name = set_path
|
49 |
+
project_name = set_name # Project name
|
50 |
+
step_suffix = 'mt' # Curent part (here part IV)
|
51 |
+
previous_step_suffix_long = "_zscore" # Previous part (here ZSCORE NOTEBOOK)
|
52 |
+
|
53 |
+
# Initial input data directory
|
54 |
+
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
55 |
+
|
56 |
+
# ZSCORE/LOG2 output directories
|
57 |
+
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
|
58 |
+
# ZSCORE/LOG2 images subdirectory
|
59 |
+
output_images_dir = os.path.join(output_data_dir,"images")
|
60 |
+
|
61 |
+
# Data and Metadata directories
|
62 |
+
# Metadata directories
|
63 |
+
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
64 |
+
# images subdirectory
|
65 |
+
metadata_images_dir = os.path.join(metadata_dir,"images")
|
66 |
+
|
67 |
+
# Create directories if they don't already exist
|
68 |
+
#for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
|
69 |
+
# if not os.path.exists(d):
|
70 |
+
#print("Creation of the" , d, "directory...")
|
71 |
+
# os.makedirs(d)
|
72 |
+
#else :
|
73 |
+
# print("The", d, "directory already exists !")
|
74 |
+
|
75 |
+
#os.chdir(input_data_dir)
|
76 |
+
|
77 |
+
|
78 |
+
# Verify paths
|
79 |
+
#print('base_dir :', base_dir)
|
80 |
+
#print('input_data_dir :', input_data_dir)
|
81 |
+
#print('output_data_dir :', output_data_dir)
|
82 |
+
#print('output_images_dir :', output_images_dir)
|
83 |
+
#print('metadata_dir :', metadata_dir)
|
84 |
+
#print('metadata_images_dir :', metadata_images_dir)
|
85 |
+
|
86 |
+
|
87 |
+
# ## IV.3. FILES
|
88 |
+
|
89 |
+
# ### IV.3.1. METADATA
|
90 |
+
|
91 |
+
|
92 |
+
filename = "marker_intensity_metadata.csv"
|
93 |
+
filename = os.path.join(metadata_dir, filename)
|
94 |
+
|
95 |
+
# Check file exists
|
96 |
+
#if not os.path.exists(filename):
|
97 |
+
# print("WARNING: Could not find desired file: "+filename)
|
98 |
+
#else :
|
99 |
+
# print("The",filename,"file was imported for further analysis!")
|
100 |
+
|
101 |
+
# Open, read in information
|
102 |
+
metadata = pd.read_csv(filename)
|
103 |
+
|
104 |
+
# Verify size with verify_line_no() function in my_modules.py
|
105 |
+
#verify_line_no(filename, metadata.shape[0] + 1)
|
106 |
+
|
107 |
+
# Verify headers
|
108 |
+
exp_cols = ['Round','Target','Channel','target_lower','full_column','marker','localisation']
|
109 |
+
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
110 |
+
|
111 |
+
metadata = metadata.dropna()
|
112 |
+
metadata.head()
|
113 |
+
|
114 |
+
|
115 |
+
# ### IV.3.2. NOT_INTENSITIES
|
116 |
+
filename = "not_intensities.csv"
|
117 |
+
filename = os.path.join(metadata_dir, filename)
|
118 |
+
|
119 |
+
# Check file exists
|
120 |
+
#if not os.path.exists(filename):
|
121 |
+
# print("WARNING: Could not find desired file: "+filename)
|
122 |
+
#else :
|
123 |
+
# print("The",filename,"file was imported for further analysis!")
|
124 |
+
|
125 |
+
not_intensities = []
|
126 |
+
with open(filename, 'r') as fh:
|
127 |
+
not_intensities = fh.read().strip().split("\n")
|
128 |
+
# take str, strip whitespace, split on new line character
|
129 |
+
|
130 |
+
# Verify size
|
131 |
+
#print("\nVerifying data read from file is the correct length...\n")
|
132 |
+
#verify_line_no(filename, len(not_intensities))
|
133 |
+
|
134 |
+
# Print to console
|
135 |
+
#print("not_intensities =\n", not_intensities)
|
136 |
+
|
137 |
+
|
138 |
+
# ### IV.3.3. FULL_TO_SHORT_COLUMN_NAMES
|
139 |
+
|
140 |
+
filename = "full_to_short_column_names.csv"
|
141 |
+
filename = os.path.join(metadata_dir, filename)
|
142 |
+
|
143 |
+
# Check file exists
|
144 |
+
#if not os.path.exists(filename):
|
145 |
+
# print("WARNING: Could not find desired file: " + filename)
|
146 |
+
#else :
|
147 |
+
# print("The",filename,"file was imported for further analysis!")
|
148 |
+
|
149 |
+
# Open, read in information
|
150 |
+
df = pd.read_csv(filename, header = 0)
|
151 |
+
|
152 |
+
# Verify size
|
153 |
+
print("Verifying data read from file is the correct length...\n")
|
154 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
155 |
+
|
156 |
+
# Turn into dictionary
|
157 |
+
full_to_short_names = df.set_index('full_name').T.to_dict('records')[0]
|
158 |
+
#print('full_to_short_names =\n',full_to_short_names)
|
159 |
+
|
160 |
+
|
161 |
+
# ### IV.3.4. SHORT_TO_FULL_COLUMN_NAMES
|
162 |
+
|
163 |
+
|
164 |
+
filename = "short_to_full_column_names.csv"
|
165 |
+
filename = os.path.join(metadata_dir, filename)
|
166 |
+
|
167 |
+
# Check file exists
|
168 |
+
#if not os.path.exists(filename):
|
169 |
+
# print("WARNING: Could not find desired file: " + filename)
|
170 |
+
#else :
|
171 |
+
# print("The",filename,"file was imported for further analysis!")
|
172 |
+
|
173 |
+
# Open, read in information
|
174 |
+
df = pd.read_csv(filename, header = 0)
|
175 |
+
|
176 |
+
# Verify size
|
177 |
+
#print("Verifying data read from file is the correct length...\n")
|
178 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
179 |
+
|
180 |
+
# Turn into dictionary
|
181 |
+
short_to_full_names = df.set_index('short_name').T.to_dict('records')[0]
|
182 |
+
# Print information
|
183 |
+
#print('short_to_full_names =\n',short_to_full_names)
|
184 |
+
|
185 |
+
|
186 |
+
# ### IV.3.10. DATA
|
187 |
+
|
188 |
+
# List files in the directory
|
189 |
+
# Check if the directory exists
|
190 |
+
if os.path.exists(input_data_dir):
|
191 |
+
# List files in the directory
|
192 |
+
ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith("_zscore.csv")]
|
193 |
+
# print("The following CSV files were detected:")
|
194 |
+
# print([sample for sample in ls_samples])
|
195 |
+
#else:
|
196 |
+
# print(f"The directory {input_data_dir} does not exist.")
|
197 |
+
# Import all the others files
|
198 |
+
dfs = {}
|
199 |
+
|
200 |
+
# Set variable to hold default header values
|
201 |
+
# First gather information on expected headers using first file in ls_samples
|
202 |
+
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
|
203 |
+
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)
|
204 |
+
expected_headers = df.columns.values
|
205 |
+
#print('Header order should be :\n', expected_headers, '\n')
|
206 |
+
|
207 |
+
###############################
|
208 |
+
# !! This may take a while !! #
|
209 |
+
###############################
|
210 |
+
for sample in ls_samples:
|
211 |
+
file_path = os.path.join(input_data_dir,sample)
|
212 |
+
|
213 |
+
try:
|
214 |
+
# Read the CSV file
|
215 |
+
df = pd.read_csv(file_path, index_col=0)
|
216 |
+
# Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
|
217 |
+
|
218 |
+
if not df.empty:
|
219 |
+
# Reorder the columns to match the expected headers list
|
220 |
+
df = df.reindex(columns=expected_headers)
|
221 |
+
# print(sample, "file is processed !\n")
|
222 |
+
#print(df)
|
223 |
+
|
224 |
+
except pd.errors.EmptyDataError:
|
225 |
+
# print(f'\nEmpty data error in {sample} file. Removing from analysis...')
|
226 |
+
ls_samples.remove(sample)
|
227 |
+
|
228 |
+
# Add df to dfs
|
229 |
+
dfs[sample] = df
|
230 |
+
|
231 |
+
#print(dfs)
|
232 |
+
|
233 |
+
# Merge dfs into one df
|
234 |
+
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
|
235 |
+
del dfs
|
236 |
+
|
237 |
+
print(df.head())
|
238 |
+
|
239 |
+
intial_df = pn.pane.DataFrame(df.head(40), width = 2500)
|
240 |
+
|
241 |
+
|
242 |
+
# ### Marker Classification
|
243 |
+
|
244 |
+
# ## IV.5. *DOTPLOTS
|
245 |
+
|
246 |
+
df
|
247 |
+
# Load existing data from stored_variables.json with error handling
|
248 |
+
try:
|
249 |
+
with open(stored_variables_path, 'r') as file:
|
250 |
+
data = json.load(file)
|
251 |
+
except json.JSONDecodeError as e:
|
252 |
+
# print(f"Error reading JSON file: {e}")
|
253 |
+
data = {}
|
254 |
+
|
255 |
+
# Debug: Print loaded data to verify keys
|
256 |
+
#print(data)
|
257 |
+
|
258 |
+
df
|
259 |
+
df.head()
|
260 |
+
|
261 |
+
|
262 |
+
# ### IV.7.2. DOTPLOTS-DETERMINED TRESHOLD
|
263 |
+
#Empty dict in stored_variables to store the cell type classification for each marker
|
264 |
+
#stored_variables_path = '/Users/harshithakolipaka/Downloads/stored_variables.json'
|
265 |
+
try:
|
266 |
+
with open(stored_variables_path, 'r') as f:
|
267 |
+
stored_variables = json.load(f)
|
268 |
+
except FileNotFoundError:
|
269 |
+
stored_variables = {}
|
270 |
+
|
271 |
+
# Check if 'thresholds' field is present, if not, add it
|
272 |
+
if 'cell_type_classification' not in stored_variables:
|
273 |
+
cell_type_classification = {}
|
274 |
+
stored_variables['cell_type_classification'] = cell_type_classification
|
275 |
+
with open(stored_variables_path, 'w') as f:
|
276 |
+
json.dump(stored_variables, f, indent=4)
|
277 |
+
|
278 |
+
#Empty dict in stored_variables to store the cell subtype classification for each marker
|
279 |
+
#stored_variables_path = '/Users/harshithakolipaka/Downloads/stored_variables.json'
|
280 |
+
try:
|
281 |
+
with open(stored_variables_path, 'r') as f:
|
282 |
+
stored_variables = json.load(f)
|
283 |
+
except FileNotFoundError:
|
284 |
+
stored_variables = {}
|
285 |
+
|
286 |
+
# Check if 'thresholds' field is present, if not, add it
|
287 |
+
if 'cell_subtype_classification' not in stored_variables:
|
288 |
+
cell_type_classification = {}
|
289 |
+
stored_variables['cell_subtype_classification'] = cell_type_classification
|
290 |
+
with open(stored_variables_path, 'w') as f:
|
291 |
+
json.dump(stored_variables, f, indent=4)
|
292 |
+
|
293 |
+
df
|
294 |
+
data = df
|
295 |
+
|
296 |
+
|
297 |
+
import json
|
298 |
+
import panel as pn
|
299 |
+
|
300 |
+
# Load existing stored variables
|
301 |
+
with open(stored_variables_path, 'r') as f:
|
302 |
+
stored_variables = json.load(f)
|
303 |
+
|
304 |
+
# Initialize a dictionary to hold threshold inputs
|
305 |
+
threshold_inputs = {}
|
306 |
+
|
307 |
+
# Create widgets for each marker to get threshold inputs from the user
|
308 |
+
for marker in stored_variables['markers']:
|
309 |
+
threshold_inputs[marker] = pn.widgets.FloatInput(name=f'{marker} Threshold', value=0.0, step=0.1)
|
310 |
+
|
311 |
+
# Load stored_variables.json
|
312 |
+
#stored_variables_path = '/Users/harshithakolipaka/Downloads/stored_variables.json'
|
313 |
+
try:
|
314 |
+
with open(stored_variables_path, 'r') as f:
|
315 |
+
stored_variables = json.load(f)
|
316 |
+
except FileNotFoundError:
|
317 |
+
stored_variables = {}
|
318 |
+
|
319 |
+
# Check if 'thresholds' field is present, if not, add it
|
320 |
+
if 'thresholds' not in stored_variables:
|
321 |
+
thresholds = {marker: input_widget.value for marker, input_widget in threshold_inputs.items()}
|
322 |
+
stored_variables['thresholds'] = thresholds
|
323 |
+
with open(stored_variables_path, 'w') as f:
|
324 |
+
json.dump(stored_variables, f, indent=4)
|
325 |
+
|
326 |
+
# Save button to save thresholds to stored_variables.json
|
327 |
+
def save_thresholds(event):
|
328 |
+
thresholds = {marker: input_widget.value for marker, input_widget in threshold_inputs.items()}
|
329 |
+
stored_variables['thresholds'] = thresholds
|
330 |
+
with open(stored_variables_path, 'w') as f:
|
331 |
+
json.dump(stored_variables, f, indent=4)
|
332 |
+
pn.state.notifications.success('Thresholds saved successfully!')
|
333 |
+
|
334 |
+
save_button2 = pn.widgets.Button(name='Save Thresholds', button_type='primary')
|
335 |
+
save_button2.on_click(save_thresholds)
|
336 |
+
|
337 |
+
# Create a GridSpec layout
|
338 |
+
grid = pn.GridSpec()
|
339 |
+
|
340 |
+
# Add the widgets to the grid with three per row
|
341 |
+
row = 0
|
342 |
+
col = 0
|
343 |
+
for marker in stored_variables['markers']:
|
344 |
+
grid[row, col] = threshold_inputs[marker]
|
345 |
+
col += 1
|
346 |
+
if col == 5:
|
347 |
+
col = 0
|
348 |
+
row += 1
|
349 |
+
|
350 |
+
# Add the save button at the end
|
351 |
+
grid[row + 1, :5] = save_button2
|
352 |
+
|
353 |
+
# Panel layout
|
354 |
+
threshold_panel = pn.Column(
|
355 |
+
pn.pane.Markdown("## Define Thresholds for Markers"),
|
356 |
+
grid)
|
357 |
+
|
358 |
+
|
359 |
+
import pandas as pd
|
360 |
+
import json
|
361 |
+
|
362 |
+
# Load stored variables from the JSON file
|
363 |
+
with open(stored_variables_path, 'r') as file:
|
364 |
+
stored_variables = json.load(file)
|
365 |
+
# Step 1: Identify intensities
|
366 |
+
intensities = list(df.columns)
|
367 |
+
|
368 |
+
def assign_cell_type(row):
|
369 |
+
for intensity in intensities:
|
370 |
+
marker = intensity.split('_')[0] # Extract marker from intensity name
|
371 |
+
if marker in stored_variables['thresholds']:
|
372 |
+
threshold = stored_variables['thresholds'][marker]
|
373 |
+
if row[intensity] > threshold:
|
374 |
+
for cell_type, markers in stored_variables['cell_type_classification'].items():
|
375 |
+
if marker in markers:
|
376 |
+
return cell_type
|
377 |
+
return 'STROMA' # Default if no condition matches
|
378 |
+
|
379 |
+
# Step 5: Apply the classification function to the DataFrame
|
380 |
+
df['cell_type'] = df.apply(lambda row: assign_cell_type(row), axis=1)
|
381 |
+
df.head()
|
382 |
+
# Check if 'IMMUNE' is present in any row of the cell_type column
|
383 |
+
present_stroma = df['cell_type'].str.contains('STROMA').sum()
|
384 |
+
present_cancer = df['cell_type'].str.contains('CANCER').sum()
|
385 |
+
present_immune = df['cell_type'].str.contains('IMMUNE').sum()
|
386 |
+
present_endothelial = df['cell_type'].str.contains('ENDOTHELIAL').sum()
|
387 |
+
# Print the result
|
388 |
+
#print(present_stroma)
|
389 |
+
#print(present_cancer)
|
390 |
+
#print(present_immune)
|
391 |
+
#print(present_endothelial)
|
392 |
+
#print(len(df))
|
393 |
+
df.head(30)
|
394 |
+
df
|
395 |
+
|
396 |
+
# ## IV.8. *HEATMAPS
|
397 |
+
#print(df.columns)
|
398 |
+
# Assuming df_merged is your DataFrame
|
399 |
+
if 'Sample_ID.1' in df.columns:
|
400 |
+
df = df.rename(columns={'Sample_ID.1': 'Sample_ID'})
|
401 |
+
# print("After renaming Sample_ID", df.columns)
|
402 |
+
# Selecting a subset of rows from the DataFrame df based on the 'Sample_ID' column
|
403 |
+
# and then randomly choosing 20,000 rows from that subset to create the DataFrame test_dfkeep = ['TMA.csv']
|
404 |
+
with open(stored_variables_path, 'r') as file:
|
405 |
+
ls_samples = stored_vars['ls_samples']
|
406 |
+
keep = ls_samples
|
407 |
+
|
408 |
+
keep_cell_type = ['ENDOTHELIAL','CANCER', 'STROMA', 'IMMUNE']
|
409 |
+
#if 'Sample_ID' in df.columns:
|
410 |
+
# print("The",df.loc[df['cell_type'].isin(keep_cell_type)])
|
411 |
+
test2_df = df.loc[(df['cell_type'].isin(keep_cell_type))
|
412 |
+
& (df['Sample_ID'].isin(keep)), :].copy()
|
413 |
+
#print(test2_df.head())
|
414 |
+
|
415 |
+
random_rows = np.random.choice(len(test2_df),20000)
|
416 |
+
df2 = test2_df.iloc[random_rows,:].copy()
|
417 |
+
|
418 |
+
df2
|
419 |
+
#print(df2)
|
420 |
+
|
421 |
+
|
422 |
+
# ### COLORS
|
423 |
+
|
424 |
+
# #### SAMPLES COLORS
|
425 |
+
color_values = sb.color_palette("husl",n_colors = len(ls_samples))
|
426 |
+
sb.palplot(sb.color_palette(color_values))
|
427 |
+
|
428 |
+
TMA_samples = [s for s in df.Sample_ID.unique() if 'TMA' in s]
|
429 |
+
TMA_color_values = sb.color_palette(n_colors = len(TMA_samples),palette = "gray")
|
430 |
+
sb.palplot(sb.color_palette(TMA_color_values))
|
431 |
+
|
432 |
+
# Store in a dictionary
|
433 |
+
color_dict = dict()
|
434 |
+
color_dict = dict(zip(df.Sample_ID.unique(), color_values))
|
435 |
+
|
436 |
+
# Replace all TMA samples' colors with gray
|
437 |
+
i = 0
|
438 |
+
for key in color_dict.keys():
|
439 |
+
if 'TMA' in key:
|
440 |
+
color_dict[key] = TMA_color_values[i]
|
441 |
+
i +=1
|
442 |
+
|
443 |
+
color_dict
|
444 |
+
|
445 |
+
color_df_sample = color_dict_to_df(color_dict, "Sample_ID")
|
446 |
+
|
447 |
+
# Save to file in metadatadirectory
|
448 |
+
filename = "sample_color_data.csv"
|
449 |
+
filename = os.path.join(metadata_dir, filename)
|
450 |
+
color_df_sample.to_csv(filename, index = False)
|
451 |
+
|
452 |
+
color_df_sample
|
453 |
+
|
454 |
+
# Legend of sample info only
|
455 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
456 |
+
g.axis('off')
|
457 |
+
handles = []
|
458 |
+
for item in color_dict.keys():
|
459 |
+
h = g.bar(0,0, color = color_dict[item],
|
460 |
+
label = item, linewidth =0)
|
461 |
+
handles.append(h)
|
462 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Sample')
|
463 |
+
|
464 |
+
filename = "Sample_legend.png"
|
465 |
+
filename = os.path.join(metadata_images_dir, filename)
|
466 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
467 |
+
|
468 |
+
filename = "sample_color_data.csv"
|
469 |
+
filename = os.path.join(metadata_dir, filename)
|
470 |
+
|
471 |
+
# Check file exists
|
472 |
+
#if not os.path.exists(filename):
|
473 |
+
# print("WARNING: Could not find desired file: " + filename)
|
474 |
+
#else :
|
475 |
+
# print("The",filename,"file was imported for further analysis!")
|
476 |
+
|
477 |
+
# Open, read in information
|
478 |
+
df = pd.read_csv(filename, header = 0)
|
479 |
+
df = df.drop(columns = ['hex'])
|
480 |
+
|
481 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
482 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
483 |
+
# substrings and convert them back into floats
|
484 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
485 |
+
|
486 |
+
# Verify size
|
487 |
+
#print("Verifying data read from file is the correct length...\n")
|
488 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
489 |
+
|
490 |
+
# Turn into dictionary
|
491 |
+
sample_color_dict = df.set_index('Sample_ID')['rgb'].to_dict()
|
492 |
+
|
493 |
+
# Print information
|
494 |
+
#print('sample_color_dict =\n',sample_color_dict)
|
495 |
+
|
496 |
+
|
497 |
+
# #### CELL TYPES COLORS
|
498 |
+
|
499 |
+
# Define your custom colors for each cell type
|
500 |
+
custom_colors = {
|
501 |
+
'CANCER': (0.1333, 0.5451, 0.1333),
|
502 |
+
'STROMA': (0.4, 0.4, 0.4),
|
503 |
+
'IMMUNE': (1, 1, 0),
|
504 |
+
'ENDOTHELIAL': (0.502, 0, 0.502)
|
505 |
+
}
|
506 |
+
|
507 |
+
# Retrieve the list of cell types
|
508 |
+
cell_types = list(custom_colors.keys())
|
509 |
+
|
510 |
+
# Extract the corresponding colors from the dictionary
|
511 |
+
color_values = [custom_colors[cell] for cell in cell_types]
|
512 |
+
|
513 |
+
# Display the colors
|
514 |
+
sb.palplot(sb.color_palette(color_values))
|
515 |
+
|
516 |
+
# Store in a dctionnary
|
517 |
+
celltype_color_dict = dict(zip(cell_types, color_values))
|
518 |
+
celltype_color_dict
|
519 |
+
|
520 |
+
# Save color information (mapping and legend) to metadata directory
|
521 |
+
# Create dataframe
|
522 |
+
celltype_color_df = color_dict_to_df(celltype_color_dict, "cell_type")
|
523 |
+
celltype_color_df.head()
|
524 |
+
|
525 |
+
# Save to file in metadatadirectory
|
526 |
+
filename = "celltype_color_data.csv"
|
527 |
+
filename = os.path.join(metadata_dir, filename)
|
528 |
+
celltype_color_df.to_csv(filename, index = False)
|
529 |
+
#print("File" + filename + " was created!")
|
530 |
+
|
531 |
+
# Legend of cell type info only
|
532 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
533 |
+
g.axis('off')
|
534 |
+
handles = []
|
535 |
+
for item in celltype_color_dict.keys():
|
536 |
+
h = g.bar(0,0, color = celltype_color_dict[item],
|
537 |
+
label = item, linewidth =0)
|
538 |
+
handles.append(h)
|
539 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cell type'),
|
540 |
+
|
541 |
+
|
542 |
+
filename = "Celltype_legend.png"
|
543 |
+
filename = os.path.join(metadata_images_dir, filename)
|
544 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
545 |
+
|
546 |
+
filename = "celltype_color_data.csv"
|
547 |
+
filename = os.path.join(metadata_dir, filename)
|
548 |
+
|
549 |
+
# Check file exists
|
550 |
+
#if not os.path.exists(filename):
|
551 |
+
# print("WARNING: Could not find desired file: "+filename)
|
552 |
+
#else :
|
553 |
+
# print("The",filename,"file was imported for further analysis!")
|
554 |
+
|
555 |
+
# Open, read in information
|
556 |
+
df = pd.read_csv(filename, header = 0)
|
557 |
+
df = df.drop(columns = ['hex'])
|
558 |
+
|
559 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
560 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
561 |
+
# substrings and convert them back into floats
|
562 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
563 |
+
|
564 |
+
# Verify size
|
565 |
+
#print("Verifying data read from file is the correct length...\n")
|
566 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
567 |
+
|
568 |
+
# Turn into dictionary
|
569 |
+
cell_type_color_dict = df.set_index('cell_type')['rgb'].to_dict()
|
570 |
+
|
571 |
+
# Print information
|
572 |
+
#print('cell_type_color_dict =\n',cell_type_color_dict)
|
573 |
+
|
574 |
+
# Colors dictionaries
|
575 |
+
sample_row_colors =df2.Sample_ID.map(sample_color_dict)
|
576 |
+
#print(sample_row_colors[1:5])
|
577 |
+
|
578 |
+
cell_type_row_colors = df2.cell_type.map(cell_type_color_dict)
|
579 |
+
#print(cell_type_row_colors[1:5])
|
580 |
+
|
581 |
+
|
582 |
+
# ## Cell Subtype Colours
|
583 |
+
import pandas as pd
|
584 |
+
import os
|
585 |
+
|
586 |
+
def rgb_tuple_from_str(rgb_str):
|
587 |
+
# Cleaning the string to remove any unexpected 'np.float64'
|
588 |
+
rgb_str = rgb_str.replace("(","").replace(")","").replace(" ","").replace("np.float64", "")
|
589 |
+
try:
|
590 |
+
rgb = list(map(float, rgb_str.split(",")))
|
591 |
+
return tuple(rgb)
|
592 |
+
except ValueError as e:
|
593 |
+
# print(f"Error converting {rgb_str} to floats: {e}")
|
594 |
+
return None # or handle the error as needed
|
595 |
+
|
596 |
+
filename = "cellsubtype_color_data.csv"
|
597 |
+
filename = os.path.join(metadata_dir, filename)
|
598 |
+
|
599 |
+
# Check file exists
|
600 |
+
#if not os.path.exists(filename):
|
601 |
+
# print("WARNING: Could not find desired file: " + filename)
|
602 |
+
#else:
|
603 |
+
# print("The", filename, "file was imported for further analysis!")
|
604 |
+
|
605 |
+
# Open, read in information
|
606 |
+
df = pd.read_csv(filename, header=0)
|
607 |
+
df = df.drop(columns=['hex'])
|
608 |
+
|
609 |
+
# Clean the 'rgb' column to remove unexpected strings
|
610 |
+
df['rgb'] = df['rgb'].str.replace("np.float64", "", regex=False)
|
611 |
+
|
612 |
+
# Apply the function to convert string to tuple of floats
|
613 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis=1)
|
614 |
+
|
615 |
+
# Verify size
|
616 |
+
#print("Verifying data read from file is the correct length...\n")
|
617 |
+
# verify_line_no(filename, df.shape[0] + 1)
|
618 |
+
|
619 |
+
# Turn into dictionary
|
620 |
+
cell_subtype_color_dict = df.set_index('cell_subtype')['rgb'].to_dict()
|
621 |
+
|
622 |
+
# Print information
|
623 |
+
#print('cell_subtype_color_dict =\n', cell_subtype_color_dict)
|
624 |
+
|
625 |
+
df2
|
626 |
+
|
627 |
+
# Colors dictionaries
|
628 |
+
sample_row_colors =df2.Sample_ID.map(sample_color_dict)
|
629 |
+
#print(sample_row_colors[1:5])
|
630 |
+
|
631 |
+
cell_subtype_row_colors = df2.cell_subtype.map(cell_subtype_color_dict)
|
632 |
+
#print(cell_subtype_row_colors[1:5])
|
633 |
+
|
634 |
+
|
635 |
+
# #### Cell Type
|
636 |
+
df
|
637 |
+
#print(f"Loaded sample files: {ls_samples}")
|
638 |
+
selected_intensities = list(df.columns)
|
639 |
+
selected_intensities = list(df.columns)
|
640 |
+
#print(selected_intensities)
|
641 |
+
df
|
642 |
+
df2
|
643 |
+
df = df2
|
644 |
+
df
|
645 |
+
import json
|
646 |
+
import pandas as pd
|
647 |
+
import numpy as np
|
648 |
+
import panel as pn
|
649 |
+
import plotly.graph_objects as go
|
650 |
+
|
651 |
+
pn.extension('plotly')
|
652 |
+
# Load the selected intensities from the JSON file
|
653 |
+
with open(stored_variables_path, 'r') as f:
|
654 |
+
json_data = json.load(f)
|
655 |
+
|
656 |
+
ls_samples = json_data["ls_samples"]
|
657 |
+
#print(f"Loaded sample files: {ls_samples}")
|
658 |
+
|
659 |
+
# Checkbox group to select files
|
660 |
+
checkbox_group = pn.widgets.CheckBoxGroup(name='Select Files', options=ls_samples)
|
661 |
+
|
662 |
+
# Initially empty dropdowns for X and Y axis selection
|
663 |
+
x_axis_dropdown = pn.widgets.Select(name='Select X-Axis', options=[])
|
664 |
+
y_axis_dropdown = pn.widgets.Select(name='Select Y-Axis', options=[])
|
665 |
+
|
666 |
+
# Input field for the number of random samples
|
667 |
+
random_sample_input = pn.widgets.IntInput(name='Number of Random Samples', value=20000, step=100)
|
668 |
+
|
669 |
+
# Sliders for interactive X and Y lines
|
670 |
+
x_line_slider = pn.widgets.FloatSlider(name='X Axis Line Position', start=0, end=1, step=0.01)
|
671 |
+
y_line_slider = pn.widgets.FloatSlider(name='Y Axis Line Position', start=0, end=1, step=0.01)
|
672 |
+
|
673 |
+
# Placeholder for the dot plot
|
674 |
+
plot_placeholder = pn.pane.Plotly()
|
675 |
+
|
676 |
+
# Placeholder for the digital reconstruction plot
|
677 |
+
reconstruction_placeholder = pn.pane.Plotly()
|
678 |
+
|
679 |
+
# Function to create the dot plot
|
680 |
+
def create_dot_plot(selected_files, x_axis, y_axis, n_samples, x_line_pos, y_line_pos):
|
681 |
+
if not selected_files:
|
682 |
+
# print("No files selected.")
|
683 |
+
return go.Figure()
|
684 |
+
|
685 |
+
keep = selected_files
|
686 |
+
|
687 |
+
test2_df = df.loc[df['Sample_ID'].isin(keep), :].copy()
|
688 |
+
# print(f"Number of samples in test2_df: {len(test2_df)}")
|
689 |
+
if len(test2_df) > n_samples:
|
690 |
+
random_rows = np.random.choice(len(test2_df), n_samples)
|
691 |
+
test_df = test2_df.iloc[random_rows, :].copy()
|
692 |
+
else:
|
693 |
+
test_df = test2_df
|
694 |
+
|
695 |
+
# print(f"Number of samples in test_df: {len(test_df)}")
|
696 |
+
|
697 |
+
if x_axis not in test_df.columns or y_axis not in test_df.columns:
|
698 |
+
# print(f"Selected axes {x_axis} or {y_axis} not in DataFrame columns.")
|
699 |
+
return go.Figure()
|
700 |
+
|
701 |
+
fig = go.Figure()
|
702 |
+
title = 'Threshold'
|
703 |
+
|
704 |
+
fig.add_trace(go.Scatter(
|
705 |
+
x=test_df[x_axis],
|
706 |
+
y=test_df[y_axis],
|
707 |
+
mode='markers',
|
708 |
+
marker=dict(color='LightSkyBlue', size=2)
|
709 |
+
))
|
710 |
+
|
711 |
+
# Add vertical and horizontal lines
|
712 |
+
fig.add_vline(x=x_line_pos, line_width=2, line_dash="dash", line_color="red")
|
713 |
+
fig.add_hline(y=y_line_pos, line_width=2, line_dash="dash", line_color="red")
|
714 |
+
|
715 |
+
fig.update_layout(
|
716 |
+
title=title,
|
717 |
+
plot_bgcolor='white',
|
718 |
+
autosize=True,
|
719 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
720 |
+
xaxis=dict(title=x_axis, linecolor='black', range=[test_df[x_axis].min(), test_df[x_axis].max()]),
|
721 |
+
yaxis=dict(title=y_axis, linecolor='black', range=[test_df[y_axis].min(), test_df[y_axis].max()])
|
722 |
+
)
|
723 |
+
return fig
|
724 |
+
|
725 |
+
def assign_cell_types_again():
|
726 |
+
with open(stored_variables_path, 'r') as file:
|
727 |
+
stored_variables = json.load(file)
|
728 |
+
intensities = list(df.columns)
|
729 |
+
def assign_cell_type(row):
|
730 |
+
for intensity in intensities:
|
731 |
+
marker = intensity.split('_')[0] # Extract marker from intensity name
|
732 |
+
if marker in stored_variables['thresholds']:
|
733 |
+
threshold = stored_variables['thresholds'][marker]
|
734 |
+
if row[intensity] > threshold:
|
735 |
+
for cell_type, markers in stored_variables['cell_type_classification'].items():
|
736 |
+
if marker in markers:
|
737 |
+
return cell_type
|
738 |
+
return 'STROMA' # Default if no condition matches
|
739 |
+
df['cell_type'] = df.apply(lambda row: assign_cell_type(row), axis=1)
|
740 |
+
return df
|
741 |
+
|
742 |
+
# Function to create the digital reconstruction plot
|
743 |
+
def create_reconstruction_plot(selected_files):
|
744 |
+
if not selected_files:
|
745 |
+
# print("No files selected.")
|
746 |
+
return go.Figure()
|
747 |
+
df = assign_cell_types_again()
|
748 |
+
fig = go.Figure()
|
749 |
+
|
750 |
+
for sample in selected_files:
|
751 |
+
sample_id = sample
|
752 |
+
sample_id2 = sample.split('_')[0]
|
753 |
+
location_colors = df.loc[df['Sample_ID'] == sample_id, ['Nuc_X', 'Nuc_Y_Inv', 'cell_type']]
|
754 |
+
|
755 |
+
title = sample_id2 + " Background Subtracted XY Map cell types"
|
756 |
+
|
757 |
+
for celltype in df.loc[df['Sample_ID'] == sample_id, 'cell_type'].unique():
|
758 |
+
fig.add_scatter(
|
759 |
+
mode='markers',
|
760 |
+
marker=dict(size=3, opacity=0.5, color='rgb' + str(cell_type_color_dict[celltype])),
|
761 |
+
x=location_colors.loc[location_colors['cell_type'] == celltype, 'Nuc_X'],
|
762 |
+
y=location_colors.loc[location_colors['cell_type'] == celltype, 'Nuc_Y_Inv'],
|
763 |
+
name=celltype
|
764 |
+
)
|
765 |
+
|
766 |
+
fig.update_layout(
|
767 |
+
title=title,
|
768 |
+
plot_bgcolor='white',
|
769 |
+
autosize=True,
|
770 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
771 |
+
legend=dict(
|
772 |
+
title='Cell Types',
|
773 |
+
font=dict(
|
774 |
+
family='Arial',
|
775 |
+
size=12,
|
776 |
+
color='black'
|
777 |
+
),
|
778 |
+
bgcolor='white',
|
779 |
+
bordercolor='black',
|
780 |
+
borderwidth=0.4,
|
781 |
+
itemsizing='constant'
|
782 |
+
),
|
783 |
+
xaxis=dict(title='Nuc_X', linecolor='black', range=[location_colors['Nuc_X'].min(), location_colors['Nuc_X'].max()]),
|
784 |
+
yaxis=dict(title='Nuc_Y_Inv', linecolor='black', range=[location_colors['Nuc_Y_Inv'].min(), location_colors['Nuc_Y_Inv'].max()])
|
785 |
+
)
|
786 |
+
|
787 |
+
return fig
|
788 |
+
|
789 |
+
def update_dropdown_options(event):
|
790 |
+
selected_files = checkbox_group.value
|
791 |
+
# print(f"Selected files in update_dropdown_options: {selected_files}")
|
792 |
+
if selected_files:
|
793 |
+
keep = selected_files
|
794 |
+
test2_df = df.loc[df['Sample_ID'].isin(keep), :].copy()
|
795 |
+
selected_intensities = list(test2_df.columns)
|
796 |
+
selected_intensities = [col for col in selected_intensities if '_Intensity_Average' in col]
|
797 |
+
# print(f"Updated dropdown options: {selected_intensities}")
|
798 |
+
x_axis_dropdown.options = selected_intensities
|
799 |
+
y_axis_dropdown.options = selected_intensities
|
800 |
+
else:
|
801 |
+
x_axis_dropdown.options = []
|
802 |
+
y_axis_dropdown.options = []
|
803 |
+
|
804 |
+
def update_slider_ranges(event):
|
805 |
+
selected_files = checkbox_group.value
|
806 |
+
x_axis = x_axis_dropdown.value
|
807 |
+
y_axis = y_axis_dropdown.value
|
808 |
+
# print("Axis:",x_axis,y_axis)
|
809 |
+
if selected_files and x_axis and y_axis:
|
810 |
+
keep = selected_files
|
811 |
+
test2_df = df.loc[df['Sample_ID'].isin(keep), :].copy()
|
812 |
+
x_range = (test2_df[x_axis].min(), test2_df[x_axis].max())
|
813 |
+
y_range = (test2_df[y_axis].min(), test2_df[y_axis].max())
|
814 |
+
# print("Ranges:",x_range,y_range)
|
815 |
+
x_line_slider.start = -abs(x_range[1])
|
816 |
+
x_line_slider.end = abs(x_range[1])
|
817 |
+
y_line_slider.start = -abs(y_range[1])
|
818 |
+
y_line_slider.end = abs(y_range[1])
|
819 |
+
x_line_slider.value = 0
|
820 |
+
y_line_slider.value = 0
|
821 |
+
|
822 |
+
def on_value_change(event):
|
823 |
+
selected_files = checkbox_group.value
|
824 |
+
x_axis = x_axis_dropdown.value
|
825 |
+
y_axis = y_axis_dropdown.value
|
826 |
+
n_samples = random_sample_input.value
|
827 |
+
x_line_pos = x_line_slider.value
|
828 |
+
y_line_pos = y_line_slider.value
|
829 |
+
# print(f"Selected files: {selected_files}")
|
830 |
+
# print(f"X-Axis: {x_axis}, Y-Axis: {y_axis}, Number of samples: {n_samples}, X Line: {x_line_pos}, Y Line: {y_line_pos}")
|
831 |
+
plot = create_dot_plot(selected_files, x_axis, y_axis, n_samples, x_line_pos, y_line_pos)
|
832 |
+
reconstruction_plot = create_reconstruction_plot(selected_files)
|
833 |
+
plot_placeholder.object = plot
|
834 |
+
reconstruction_placeholder.object = reconstruction_plot
|
835 |
+
|
836 |
+
# Link value changes to function
|
837 |
+
checkbox_group.param.watch(update_dropdown_options, 'value')
|
838 |
+
checkbox_group.param.watch(update_slider_ranges, 'value')
|
839 |
+
x_axis_dropdown.param.watch(update_slider_ranges, 'value')
|
840 |
+
y_axis_dropdown.param.watch(update_slider_ranges, 'value')
|
841 |
+
x_axis_dropdown.param.watch(on_value_change, 'value')
|
842 |
+
y_axis_dropdown.param.watch(on_value_change, 'value')
|
843 |
+
random_sample_input.param.watch(on_value_change, 'value')
|
844 |
+
x_line_slider.param.watch(on_value_change, 'value')
|
845 |
+
y_line_slider.param.watch(on_value_change, 'value')
|
846 |
+
|
847 |
+
# Layout
|
848 |
+
plot_with_reconstruction = pn.Column(
|
849 |
+
"## Select Files to Construct Dot Plot",
|
850 |
+
checkbox_group,
|
851 |
+
x_axis_dropdown,
|
852 |
+
y_axis_dropdown,
|
853 |
+
random_sample_input,
|
854 |
+
pn.Row(x_line_slider, y_line_slider),
|
855 |
+
pn.Row(
|
856 |
+
pn.Column(
|
857 |
+
"## Dot Plot",
|
858 |
+
pn.Column(plot_placeholder)),
|
859 |
+
pn.Column(
|
860 |
+
"## Digital Reconstruction Plot",
|
861 |
+
reconstruction_placeholder),
|
862 |
+
))
|
863 |
+
|
864 |
+
# Serve the app
|
865 |
+
#plot_with_reconstruction.show()
|
866 |
+
|
867 |
+
# ## MAKE HEATMAPS
|
868 |
+
|
869 |
+
# ### Cell Subtype
|
870 |
+
# Create data structure to hold everything we need for row/column annotations
|
871 |
+
# annotations is a dictionary
|
872 |
+
## IMPORTANT - if you use 'annotations', it MUST have both 'rows' and 'cols'
|
873 |
+
## objects inside. These can be empty lists, but they must be there!
|
874 |
+
anns = {}
|
875 |
+
|
876 |
+
# create a data structure to hold everything we need for only row annotations
|
877 |
+
# row_annotations is a list, where each item therein is a dictioary corresponding
|
878 |
+
# to all of the data pertaining to that particular annotation
|
879 |
+
# Adding each item (e.g., Sample, then Cluster), one at a time to ensure ordering
|
880 |
+
# is as anticipated on figure
|
881 |
+
row_annotations = []
|
882 |
+
row_annotations.append({'label':'Sample',
|
883 |
+
'type':'row',
|
884 |
+
'mapping':sample_row_colors,
|
885 |
+
'dict':sample_color_dict,
|
886 |
+
'location':'center left',
|
887 |
+
'bbox_to_anchor':(0.1, 0.9)})
|
888 |
+
row_annotations.append({'label':'Cell type',
|
889 |
+
'type':'row',
|
890 |
+
'mapping':cell_type_row_colors,
|
891 |
+
'dict':cell_type_color_dict,
|
892 |
+
'location':'center left',
|
893 |
+
'bbox_to_anchor':(0.17, 0.9)})
|
894 |
+
anns['rows'] = row_annotations
|
895 |
+
|
896 |
+
# Now we repeat the process for column annotations
|
897 |
+
col_annotations = []
|
898 |
+
anns['cols'] = col_annotations
|
899 |
+
# To simplify marker display in the following figures (heatmap, etc)
|
900 |
+
figure_marker_names = {key: value.split('_')[0] for key, value in full_to_short_names.items()}
|
901 |
+
not_intensities
|
902 |
+
df2
|
903 |
+
df2.drop('cell_subtype', axis = 'columns')
|
904 |
+
not_intensities = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size',
|
905 |
+
'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID',
|
906 |
+
'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']
|
907 |
+
df2 = assign_cell_types_again()
|
908 |
+
df2.drop('cell_subtype', axis = 'columns')
|
909 |
+
df2.head()
|
910 |
+
# Save one heatmap
|
911 |
+
|
912 |
+
data = df
|
913 |
+
data
|
914 |
+
#print(data.columns)
|
915 |
+
# Selecting a subset of rows from df based on the 'Sample_ID' column
|
916 |
+
# and then random>ly choosing 50,000 rows from that subset to create the DataFrame test_df
|
917 |
+
with open(stored_variables_path, 'r') as file:
|
918 |
+
ls_samples = stored_vars['ls_samples']
|
919 |
+
keep = list(ls_samples)
|
920 |
+
keep_cell_type = ['STROMA','CANCER','IMMUNE','ENDOTHELIAL']
|
921 |
+
|
922 |
+
# Check the individual conditions
|
923 |
+
cell_type_condition = data['cell_type'].isin(keep_cell_type)
|
924 |
+
sample_id_condition = data['Sample_ID'].isin(keep)
|
925 |
+
#print("Cell type condition:")
|
926 |
+
#print(cell_type_condition.head())
|
927 |
+
#print("Sample ID condition:")
|
928 |
+
#print(sample_id_condition.head())
|
929 |
+
|
930 |
+
# Combine the conditions
|
931 |
+
combined_condition = cell_type_condition & sample_id_condition
|
932 |
+
#print("Combined condition:")
|
933 |
+
#print(combined_condition.head())
|
934 |
+
|
935 |
+
# Apply the combined condition to filter the DataFrame
|
936 |
+
test2_df = data.loc[combined_condition].copy()
|
937 |
+
#print("Filtered DataFrame:")
|
938 |
+
#print(test2_df.head())
|
939 |
+
|
940 |
+
#test2_df = data.loc[data['cell_type'].isin(keep_cell_type) & data['Sample_ID'].isin(keep)].copy()
|
941 |
+
#print("Test2_df",test2_df.head())
|
942 |
+
#print(len(test2_df))
|
943 |
+
|
944 |
+
#random_rows = np.random.choice(len(test2_df),len(test2_df))
|
945 |
+
random_rows = np.random.choice(len(test2_df),1000)
|
946 |
+
test_df = test2_df.iloc[random_rows,:].copy()
|
947 |
+
#print(len(test_df))
|
948 |
+
test_df
|
949 |
+
import json
|
950 |
+
import panel as pn
|
951 |
+
import param
|
952 |
+
import pandas as pd
|
953 |
+
|
954 |
+
# Initialize Panel extension
|
955 |
+
pn.extension('tabulator')
|
956 |
+
|
957 |
+
# Path to the stored variables file
|
958 |
+
file_path = stored_variables_path
|
959 |
+
|
960 |
+
# Load existing data from stored_variables.json with error handling
|
961 |
+
def load_data():
|
962 |
+
try:
|
963 |
+
with open(file_path, 'r') as file:
|
964 |
+
return json.load(file)
|
965 |
+
except json.JSONDecodeError as e:
|
966 |
+
print(f"Error reading JSON file: {e}")
|
967 |
+
return {}
|
968 |
+
|
969 |
+
data = load_data()
|
970 |
+
|
971 |
+
# Define markers, cell types, and cell subtypes from the loaded data
|
972 |
+
markers = data.get('markers', [])
|
973 |
+
cell_types = data.get('cell_type', [])
|
974 |
+
cell_subtypes = data.get('cell_subtype', [])
|
975 |
+
|
976 |
+
# Sanitize option names
|
977 |
+
def sanitize_options(options):
|
978 |
+
return [opt.replace(' ', '_').replace('+', 'plus').replace('α', 'a').replace("'", "") for opt in options]
|
979 |
+
|
980 |
+
sanitized_cell_types = sanitize_options(cell_types)
|
981 |
+
sanitized_cell_subtypes = sanitize_options(cell_subtypes)
|
982 |
+
|
983 |
+
# Helper function to create a Parameterized class and DataFrame
|
984 |
+
def create_classification_df(items, item_label):
|
985 |
+
params = {item_label: param.String()}
|
986 |
+
for marker in markers:
|
987 |
+
params[marker] = param.Boolean(default=False)
|
988 |
+
|
989 |
+
Classification = type(f'{item_label}Classification', (param.Parameterized,), params)
|
990 |
+
|
991 |
+
classification_widgets = []
|
992 |
+
for item in items:
|
993 |
+
item_params = {marker: False for marker in markers}
|
994 |
+
item_params[item_label] = item
|
995 |
+
classification_widgets.append(Classification(**item_params))
|
996 |
+
|
997 |
+
classification_df = pd.DataFrame([cw.param.values() for cw in classification_widgets])
|
998 |
+
classification_df = classification_df[[item_label] + markers]
|
999 |
+
return classification_df
|
1000 |
+
|
1001 |
+
# Create DataFrames for cell types and cell subtypes
|
1002 |
+
cell_type_df = create_classification_df(sanitized_cell_types, 'CELL_TYPE')
|
1003 |
+
cell_subtype_df = create_classification_df(sanitized_cell_subtypes, 'CELL_SUBTYPE')
|
1004 |
+
|
1005 |
+
# Define formatters for Tabulator widgets
|
1006 |
+
tabulator_formatters = {marker: {'type': 'tickCross'} for marker in markers}
|
1007 |
+
|
1008 |
+
# Create Tabulator widgets
|
1009 |
+
cell_type_table = pn.widgets.Tabulator(cell_type_df, formatters=tabulator_formatters)
|
1010 |
+
cell_subtype_table = pn.widgets.Tabulator(cell_subtype_df, formatters=tabulator_formatters)
|
1011 |
+
|
1012 |
+
# Save functions for cell types and cell subtypes
|
1013 |
+
def save_data(table, classification_key, item_label):
|
1014 |
+
current_data = table.value
|
1015 |
+
df_bool = current_data.replace({'✔': True, '✘': False})
|
1016 |
+
|
1017 |
+
classification = {}
|
1018 |
+
for i, row in df_bool.iterrows():
|
1019 |
+
item = row[item_label]
|
1020 |
+
selected_markers = [marker for marker in markers if row[marker]]
|
1021 |
+
classification[item] = selected_markers
|
1022 |
+
|
1023 |
+
data[classification_key] = classification
|
1024 |
+
# try:
|
1025 |
+
with open(file_path, 'w') as file:
|
1026 |
+
json.dump(data, file, indent=4)
|
1027 |
+
# print(f"{classification_key} saved successfully.")
|
1028 |
+
# except IOError as e:
|
1029 |
+
# print(f"Error writing JSON file: {e}")
|
1030 |
+
|
1031 |
+
# Button actions
|
1032 |
+
def save_cell_type_selections(event):
|
1033 |
+
save_data(cell_type_table, 'cell_type_classification', 'CELL_TYPE')
|
1034 |
+
|
1035 |
+
def save_cell_subtype_selections(event):
|
1036 |
+
save_data(cell_subtype_table, 'cell_subtype_classification', 'CELL_SUBTYPE')
|
1037 |
+
|
1038 |
+
# Create save buttons
|
1039 |
+
save_cell_type_button = pn.widgets.Button(name='Save Cell Type Selections', button_type='primary')
|
1040 |
+
save_cell_type_button.on_click(save_cell_type_selections)
|
1041 |
+
|
1042 |
+
save_cell_subtype_button = pn.widgets.Button(name='Save Cell Subtype Selections', button_type='primary')
|
1043 |
+
save_cell_subtype_button.on_click(save_cell_subtype_selections)
|
1044 |
+
cell_type_classification_app_main = pn.Column(
|
1045 |
+
pn.pane.Markdown("# Cell Type Classification"),
|
1046 |
+
cell_type_table,
|
1047 |
+
save_cell_type_button
|
1048 |
+
)
|
1049 |
+
cell_subtype_classification_app_main = pn.Column(
|
1050 |
+
pn.pane.Markdown("# Cell Subtype Classification"),
|
1051 |
+
cell_subtype_table,
|
1052 |
+
save_cell_subtype_button
|
1053 |
+
)
|
1054 |
+
#cell_subtype_classification_app_main.show()
|
1055 |
+
|
1056 |
+
import json
|
1057 |
+
import panel as pn
|
1058 |
+
|
1059 |
+
# Load existing stored variables
|
1060 |
+
with open(stored_variables_path, 'r') as f:
|
1061 |
+
stored_variables = json.load(f)
|
1062 |
+
|
1063 |
+
# Initialize a dictionary to hold threshold inputs
|
1064 |
+
subtype_threshold_inputs = {}
|
1065 |
+
|
1066 |
+
# Create widgets for each marker to get threshold inputs from the user
|
1067 |
+
for marker in stored_variables['markers']:
|
1068 |
+
subtype_threshold_inputs[marker] = pn.widgets.FloatInput(name=f'{marker} Threshold', value=0.0, step=0.1)
|
1069 |
+
|
1070 |
+
try:
|
1071 |
+
with open(stored_variables_path, 'r') as f:
|
1072 |
+
stored_variables = json.load(f)
|
1073 |
+
except FileNotFoundError:
|
1074 |
+
stored_variables = {}
|
1075 |
+
|
1076 |
+
# Check if 'thresholds' field is present, if not, add it
|
1077 |
+
if 'subtype_thresholds' not in stored_variables:
|
1078 |
+
subtype_thresholds = {marker: input_widget.value for marker, input_widget in subtype_threshold_inputs.items()}
|
1079 |
+
stored_variables['subtype_thresholds'] = subtype_thresholds
|
1080 |
+
with open(stored_variables_path, 'w') as f:
|
1081 |
+
json.dump(stored_variables, f, indent=4)
|
1082 |
+
|
1083 |
+
# Save button to save thresholds to stored_variables.json
|
1084 |
+
def save_thresholds(event):
|
1085 |
+
subtype_thresholds = {marker: input_widget.value for marker, input_widget in subtype_threshold_inputs.items()}
|
1086 |
+
stored_variables['subtype_thresholds'] = subtype_thresholds
|
1087 |
+
with open(stored_variables_path, 'w') as f:
|
1088 |
+
json.dump(stored_variables, f, indent=4)
|
1089 |
+
save_button = pn.widgets.Button(name='Save Thresholds', button_type='primary')
|
1090 |
+
save_button.on_click(save_thresholds)
|
1091 |
+
|
1092 |
+
# Create a GridSpec layout
|
1093 |
+
subtype_grid = pn.GridSpec()
|
1094 |
+
|
1095 |
+
# Add the widgets to the grid with five per row
|
1096 |
+
row = 0
|
1097 |
+
col = 0
|
1098 |
+
for marker in stored_variables['markers']:
|
1099 |
+
subtype_grid[row, col] = subtype_threshold_inputs[marker]
|
1100 |
+
col += 1
|
1101 |
+
if col == 5:
|
1102 |
+
col = 0
|
1103 |
+
row += 1
|
1104 |
+
|
1105 |
+
# Add the save button at the end, spanning across all columns of the new row
|
1106 |
+
subtype_grid[row + 1, :5] = save_button
|
1107 |
+
|
1108 |
+
# Panel layout
|
1109 |
+
subtype_threshold_panel = pn.Column(
|
1110 |
+
pn.pane.Markdown("## Define Thresholds for Markers"),
|
1111 |
+
subtype_grid)
|
1112 |
+
|
1113 |
+
# Display the panel
|
1114 |
+
#subtype_threshold_panel.show()
|
1115 |
+
|
1116 |
+
with open(stored_variables_path, 'r') as file:
|
1117 |
+
stored_variables = json.load(file)
|
1118 |
+
intensities = list(df.columns)
|
1119 |
+
def assign_cell_subtypes(row):
|
1120 |
+
for intensity in intensities:
|
1121 |
+
marker = intensity.split('_')[0] # Extract marker from intensity name
|
1122 |
+
if marker in stored_variables['subtype_thresholds']:
|
1123 |
+
threshold = stored_variables['subtype_thresholds'][marker]
|
1124 |
+
if row[intensity] > threshold:
|
1125 |
+
for cell_subtype, markers in stored_variables['cell_subtype_classification'].items():
|
1126 |
+
if marker in markers:
|
1127 |
+
return cell_subtype
|
1128 |
+
return 'DC'
|
1129 |
+
|
1130 |
+
df = assign_cell_types_again()
|
1131 |
+
df['cell_subtype'] = df.apply(lambda row: assign_cell_subtypes(row), axis=1)
|
1132 |
+
|
1133 |
+
df
|
1134 |
+
data
|
1135 |
+
# Define a color dictionary
|
1136 |
+
cell_subtype_color_dict = {
|
1137 |
+
'DC': (0.6509803921568628, 0.807843137254902, 0.8901960784313725),
|
1138 |
+
'B': (0.12156862745098039, 0.47058823529411764, 0.7058823529411765),
|
1139 |
+
'TCD4': (0.6980392156862745, 0.8745098039215686, 0.5411764705882353),
|
1140 |
+
'Exhausted TCD4': (0.2, 0.6274509803921569, 0.17254901960784313),
|
1141 |
+
'Exhausted TCD8': (0.984313725490196, 0.6039215686274509, 0.6),
|
1142 |
+
'TCD8': (0.8901960784313725, 0.10196078431372549, 0.10980392156862745),
|
1143 |
+
'M1': (0.9921568627450981, 0.7490196078431373, 0.43529411764705883),
|
1144 |
+
'M2': (1.0, 0.4980392156862745, 0.0),
|
1145 |
+
'Treg': (0.792156862745098, 0.6980392156862745, 0.8392156862745098),
|
1146 |
+
'Other CD45+': (0.41568627450980394, 0.23921568627450981, 0.6039215686274509),
|
1147 |
+
'Cancer': (1.0, 1.0, 0.6),
|
1148 |
+
'myCAF αSMA+': (0.6941176470588235, 0.34901960784313724, 0.1568627450980392),
|
1149 |
+
'Stroma': (0.6509803921568628, 0.807843137254902, 0.8901960784313725),
|
1150 |
+
'Endothelial': (0.12156862745098039, 0.47058823529411764, 0.7058823529411765)
|
1151 |
+
}
|
1152 |
+
# Add the 'rgb' prefix to the colors
|
1153 |
+
cell_subtype_color_dict = {k: f"rgb{v}" for k, v in cell_subtype_color_dict.items()}
|
1154 |
+
|
1155 |
+
# Load stored variables from JSON file
|
1156 |
+
def load_stored_variables(path):
|
1157 |
+
with open(path, 'r') as file:
|
1158 |
+
return json.load(file)
|
1159 |
+
|
1160 |
+
# Get subtype intensities columns
|
1161 |
+
subtype_intensities = [col for col in df.columns if '_Intensity_Average' in col]
|
1162 |
+
|
1163 |
+
# Assign cell subtype based on thresholds and classifications
|
1164 |
+
def assign_cell_subtype(row):
|
1165 |
+
#print("new_row")
|
1166 |
+
stored_variables = load_stored_variables(stored_variables_path)
|
1167 |
+
for subtype_intensity in subtype_intensities:
|
1168 |
+
marker = subtype_intensity.split('_')[0]
|
1169 |
+
if marker in stored_variables['subtype_thresholds']:
|
1170 |
+
subtype_threshold = stored_variables['subtype_thresholds'][marker]
|
1171 |
+
if row[subtype_intensity] > subtype_threshold:
|
1172 |
+
for cell_subtype, markers in stored_variables['cell_subtype_classification'].items():
|
1173 |
+
#print(cell_subtype,marker,markers)
|
1174 |
+
if marker in markers:
|
1175 |
+
#print("Markers:",marker)
|
1176 |
+
return cell_subtype # Return the assigned subtype
|
1177 |
+
return 'DC' # Default value if no conditions match
|
1178 |
+
|
1179 |
+
# Main function to assign cell subtypes to DataFrame
|
1180 |
+
def assign_cell_subtypes_again():
|
1181 |
+
df['cell_subtype'] = df.apply(lambda row: assign_cell_subtype(row), axis=1)
|
1182 |
+
return df
|
1183 |
+
|
1184 |
+
import json
|
1185 |
+
import pandas as pd
|
1186 |
+
import numpy as np
|
1187 |
+
import panel as pn
|
1188 |
+
import plotly.graph_objects as go
|
1189 |
+
|
1190 |
+
pn.extension('plotly')
|
1191 |
+
|
1192 |
+
# Load the selected intensities from the JSON file
|
1193 |
+
with open(stored_variables_path, 'r') as f:
|
1194 |
+
json_data = json.load(f)
|
1195 |
+
|
1196 |
+
subtype_ls_samples = json_data["ls_samples"]
|
1197 |
+
#print(f"Loaded sample files: {subtype_ls_samples}")
|
1198 |
+
|
1199 |
+
|
1200 |
+
# Checkbox group to select files
|
1201 |
+
subtype_checkbox_group = pn.widgets.CheckBoxGroup(name='Select Files', options=subtype_ls_samples)
|
1202 |
+
|
1203 |
+
# Initially empty dropdowns for X and Y axis selection
|
1204 |
+
subtype_x_axis_dropdown = pn.widgets.Select(name='Select X-Axis', options=[])
|
1205 |
+
subtype_y_axis_dropdown = pn.widgets.Select(name='Select Y-Axis', options=[])
|
1206 |
+
|
1207 |
+
# Input field for the number of random samples
|
1208 |
+
subtype_random_sample_input = pn.widgets.IntInput(name='Number of Random Samples', value=20000, step=100)
|
1209 |
+
|
1210 |
+
# Sliders for interactive X and Y lines
|
1211 |
+
subtype_x_line_slider = pn.widgets.FloatSlider(name='X Axis Line Position', start=0, end=1, step=0.01)
|
1212 |
+
subtype_y_line_slider = pn.widgets.FloatSlider(name='Y Axis Line Position', start=0, end=1, step=0.01)
|
1213 |
+
|
1214 |
+
# Placeholder for the dot plot
|
1215 |
+
subtype_plot_placeholder = pn.pane.Plotly()
|
1216 |
+
|
1217 |
+
# Placeholder for the digital reconstruction plot
|
1218 |
+
subtype_reconstruction_placeholder = pn.pane.Plotly()
|
1219 |
+
|
1220 |
+
def update_color_dict():
|
1221 |
+
# Define a color dictionary
|
1222 |
+
cell_subtype_color_dict = {
|
1223 |
+
'DC': (0.6509803921568628, 0.807843137254902, 0.8901960784313725),
|
1224 |
+
'B': (0.12156862745098039, 0.47058823529411764, 0.7058823529411765),
|
1225 |
+
'TCD4': (0.6980392156862745, 0.8745098039215686, 0.5411764705882353),
|
1226 |
+
'Exhausted TCD4': (0.2, 0.6274509803921569, 0.17254901960784313),
|
1227 |
+
'Exhausted TCD8': (0.984313725490196, 0.6039215686274509, 0.6),
|
1228 |
+
'TCD8': (0.8901960784313725, 0.10196078431372549, 0.10980392156862745),
|
1229 |
+
'M1': (0.9921568627450981, 0.7490196078431373, 0.43529411764705883),
|
1230 |
+
'M2': (1.0, 0.4980392156862745, 0.0),
|
1231 |
+
'Treg': (0.792156862745098, 0.6980392156862745, 0.8392156862745098),
|
1232 |
+
'Other CD45+': (0.41568627450980394, 0.23921568627450981, 0.6039215686274509),
|
1233 |
+
'Cancer': (1.0, 1.0, 0.6),
|
1234 |
+
'myCAF αSMA+': (0.6941176470588235, 0.34901960784313724, 0.1568627450980392),
|
1235 |
+
'Stroma': (0.6509803921568628, 0.807843137254902, 0.8901960784313725),
|
1236 |
+
'Endothelial': (0.12156862745098039, 0.47058823529411764, 0.7058823529411765)
|
1237 |
+
}
|
1238 |
+
# Add the 'rgb' prefix to the colors
|
1239 |
+
cell_subtype_color_dict = {k: f"rgb{v}" for k, v in cell_subtype_color_dict.items()}
|
1240 |
+
return cell_subtype_color_dict
|
1241 |
+
|
1242 |
+
# Function to create the dot plot
|
1243 |
+
def create_subtype_dot_plot(subtype_selected_files, subtype_x_axis, subtype_y_axis, subtype_n_samples, subtype_x_line_pos, subtype_y_line_pos):
|
1244 |
+
if not subtype_selected_files:
|
1245 |
+
# print("No files selected.")
|
1246 |
+
return go.Figure()
|
1247 |
+
subtype_keep = subtype_selected_files
|
1248 |
+
# print(df)
|
1249 |
+
subtype_test2_df = df.loc[df['Sample_ID'].isin(subtype_keep), :].copy()
|
1250 |
+
#subtype_test2_df = df.loc[df['Sample_ID'].isin('TMA.csv'), :].copy()
|
1251 |
+
# print(f"Number of samples in test2_df: {len(subtype_test2_df)}")
|
1252 |
+
if len(subtype_test2_df) > subtype_n_samples:
|
1253 |
+
subtype_random_rows = np.random.choice(len(subtype_test2_df), subtype_n_samples)
|
1254 |
+
subtype_test_df = subtype_test2_df.iloc[subtype_random_rows, :].copy()
|
1255 |
+
else:
|
1256 |
+
subtype_test_df = subtype_test2_df
|
1257 |
+
|
1258 |
+
# print(f"Number of samples in test_df: {len(subtype_test_df)}")
|
1259 |
+
|
1260 |
+
if subtype_x_axis not in subtype_test_df.columns or subtype_y_axis not in subtype_test_df.columns:
|
1261 |
+
# print(f"Selected axes {subtype_x_axis} or {subtype_y_axis} not in DataFrame columns.")
|
1262 |
+
return go.Figure()
|
1263 |
+
|
1264 |
+
fig = go.Figure()
|
1265 |
+
title = 'Threshold'
|
1266 |
+
|
1267 |
+
fig.add_trace(go.Scatter(
|
1268 |
+
x=subtype_test_df[subtype_x_axis],
|
1269 |
+
y=subtype_test_df[subtype_y_axis],
|
1270 |
+
mode='markers',
|
1271 |
+
marker=dict(color='LightSkyBlue', size=2)
|
1272 |
+
))
|
1273 |
+
|
1274 |
+
# Add vertical and horizontal lines
|
1275 |
+
fig.add_vline(x=subtype_x_line_pos, line_width=2, line_dash="dash", line_color="red")
|
1276 |
+
fig.add_hline(y=subtype_y_line_pos, line_width=2, line_dash="dash", line_color="red")
|
1277 |
+
|
1278 |
+
fig.update_layout(
|
1279 |
+
title=title,
|
1280 |
+
plot_bgcolor='white',
|
1281 |
+
autosize=True,
|
1282 |
+
margin=dict(l=20, r=20, t=40, b=20),
|
1283 |
+
xaxis=dict(title=subtype_x_axis, linecolor='black', range=[subtype_test_df[subtype_x_axis].min(), subtype_test_df[subtype_x_axis].max()]),
|
1284 |
+
yaxis=dict(title=subtype_y_axis, linecolor='black', range=[subtype_test_df[subtype_y_axis].min(), subtype_test_df[subtype_y_axis].max()])
|
1285 |
+
)
|
1286 |
+
return fig
|
1287 |
+
|
1288 |
+
def create_subtype_reconstruction_plot(subtype_selected_files):
|
1289 |
+
cell_subtype_color_dict = update_color_dict()
|
1290 |
+
# print(subtype_selected_files)
|
1291 |
+
if not subtype_selected_files:
|
1292 |
+
# print("No files selected.")
|
1293 |
+
return go.Figure()
|
1294 |
+
df = assign_cell_subtypes_again()
|
1295 |
+
subtype_fig = go.Figure()
|
1296 |
+
|
1297 |
+
for sample in subtype_selected_files:
|
1298 |
+
sample_id = sample
|
1299 |
+
sample_id2 = sample.split('_')[0]
|
1300 |
+
location_colors = df.loc[df['Sample_ID'] == sample_id, ['Nuc_X', 'Nuc_Y_Inv', 'cell_subtype']]
|
1301 |
+
# print(location_colors.head())
|
1302 |
+
title = sample_id2 + " Background Subtracted XY Map cell subtypes"
|
1303 |
+
for cellsubtype in df.loc[df['Sample_ID'] == sample_id, 'cell_subtype'].unique():
|
1304 |
+
color = str(cell_subtype_color_dict[cellsubtype])
|
1305 |
+
subtype_fig.add_scatter(
|
1306 |
+
mode='markers',
|
1307 |
+
marker=dict(size=3, opacity=0.5, color=color),
|
1308 |
+
x=location_colors.loc[location_colors['cell_subtype'] == cellsubtype, 'Nuc_X'],
|
1309 |
+
y=location_colors.loc[location_colors['cell_subtype'] == cellsubtype, 'Nuc_Y_Inv'],
|
1310 |
+
name=cellsubtype
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
subtype_fig.update_layout(title=title, plot_bgcolor='white')
|
1314 |
+
subtype_fig.update_xaxes(title_text='Nuc_X', linecolor='black')
|
1315 |
+
subtype_fig.update_yaxes(title_text='Nuc_Y_Inv', linecolor='black')
|
1316 |
+
|
1317 |
+
# Adjust the size of the points
|
1318 |
+
for trace in subtype_fig.data:
|
1319 |
+
trace.marker.size = 2
|
1320 |
+
|
1321 |
+
subtype_fig.update_layout(
|
1322 |
+
title=title,
|
1323 |
+
plot_bgcolor='white',
|
1324 |
+
legend=dict(
|
1325 |
+
title='Cell Subtypes', # Legend title
|
1326 |
+
font=dict(
|
1327 |
+
family='Arial',
|
1328 |
+
size=12,
|
1329 |
+
color='black'
|
1330 |
+
),
|
1331 |
+
bgcolor='white',
|
1332 |
+
bordercolor='black',
|
1333 |
+
borderwidth=0.4,
|
1334 |
+
itemsizing='constant'
|
1335 |
+
)
|
1336 |
+
)
|
1337 |
+
# Save the figure as an image if needed
|
1338 |
+
#subtype_fig.write_image(output_images_dir + "/" + title.replace(" ", "_") + ".png", width=1200, height=800, scale=4)
|
1339 |
+
# print(sample_id, "processed!")
|
1340 |
+
|
1341 |
+
return subtype_fig
|
1342 |
+
|
1343 |
+
def update_subtype_dropdown_options(event):
|
1344 |
+
# print(1)
|
1345 |
+
subtype_selected_files = subtype_checkbox_group.value
|
1346 |
+
# print(f"Selected files in update_dropdown_options: {subtype_selected_files}")
|
1347 |
+
if subtype_selected_files:
|
1348 |
+
subtype_keep = subtype_selected_files
|
1349 |
+
subtype_test2_df = df.loc[df['Sample_ID'].isin(subtype_keep), :].copy()
|
1350 |
+
subtype_selected_intensities = list(subtype_test2_df.columns)
|
1351 |
+
subtype_selected_intensities = [col for col in subtype_selected_intensities if '_Intensity_Average' in col]
|
1352 |
+
# print(f"Updated dropdown options: {subtype_selected_intensities}")
|
1353 |
+
subtype_x_axis_dropdown.options = subtype_selected_intensities
|
1354 |
+
subtype_y_axis_dropdown.options = subtype_selected_intensities
|
1355 |
+
else:
|
1356 |
+
subtype_x_axis_dropdown.options = []
|
1357 |
+
subtype_y_axis_dropdown.options = []
|
1358 |
+
|
1359 |
+
def update_subtype_slider_ranges(event):
|
1360 |
+
subtype_selected_files = subtype_checkbox_group.value
|
1361 |
+
subtype_x_axis = subtype_x_axis_dropdown.value
|
1362 |
+
subtype_y_axis = subtype_y_axis_dropdown.value
|
1363 |
+
|
1364 |
+
if subtype_selected_files and subtype_x_axis and subtype_y_axis:
|
1365 |
+
subtype_keep = subtype_selected_files
|
1366 |
+
subtype_test2_df = df.loc[df['Sample_ID'].isin(subtype_keep), :].copy()
|
1367 |
+
subtype_x_range = (subtype_test2_df[subtype_x_axis].min(), subtype_test2_df[subtype_x_axis].max())
|
1368 |
+
subtype_y_range = (subtype_test2_df[subtype_y_axis].min(), subtype_test2_df[subtype_y_axis].max())
|
1369 |
+
subtype_x_line_slider.start = -abs(subtype_x_range[1])
|
1370 |
+
subtype_x_line_slider.end = abs(subtype_x_range[1])
|
1371 |
+
subtype_y_line_slider.start = -abs(subtype_y_range[1])
|
1372 |
+
subtype_y_line_slider.end = abs(subtype_y_range[1])
|
1373 |
+
subtype_x_line_slider.value = 0
|
1374 |
+
subtype_y_line_slider.value = 0
|
1375 |
+
|
1376 |
+
def on_subtype_value_change(event):
|
1377 |
+
subtype_selected_files = subtype_checkbox_group.value
|
1378 |
+
subtype_x_axis = subtype_x_axis_dropdown.value
|
1379 |
+
subtype_y_axis = subtype_y_axis_dropdown.value
|
1380 |
+
subtype_n_samples = subtype_random_sample_input.value
|
1381 |
+
subtype_x_line_pos = subtype_x_line_slider.value
|
1382 |
+
subtype_y_line_pos = subtype_y_line_slider.value
|
1383 |
+
# print(f"Selected files: {subtype_selected_files}")
|
1384 |
+
# print(f"X-Axis: {subtype_x_axis}, Y-Axis: {subtype_y_axis}, Number of samples: {subtype_n_samples}, X Line: {subtype_x_line_pos}, Y Line: {subtype_y_line_pos}")
|
1385 |
+
subtype_plot = create_subtype_dot_plot(subtype_selected_files, subtype_x_axis, subtype_y_axis, subtype_n_samples, subtype_x_line_pos, subtype_y_line_pos)
|
1386 |
+
subtype_reconstruction_plot = create_subtype_reconstruction_plot(subtype_selected_files)
|
1387 |
+
subtype_plot_placeholder.object = subtype_plot
|
1388 |
+
subtype_reconstruction_placeholder.object = subtype_reconstruction_plot
|
1389 |
+
|
1390 |
+
# Link value changes to function
|
1391 |
+
subtype_checkbox_group.param.watch(update_subtype_dropdown_options, 'value')
|
1392 |
+
subtype_checkbox_group.param.watch(update_subtype_slider_ranges, 'value')
|
1393 |
+
subtype_x_axis_dropdown.param.watch(update_subtype_slider_ranges, 'value')
|
1394 |
+
subtype_y_axis_dropdown.param.watch(update_subtype_slider_ranges, 'value')
|
1395 |
+
subtype_x_axis_dropdown.param.watch(on_subtype_value_change, 'value')
|
1396 |
+
subtype_y_axis_dropdown.param.watch(on_subtype_value_change, 'value')
|
1397 |
+
subtype_random_sample_input.param.watch(on_subtype_value_change, 'value')
|
1398 |
+
subtype_x_line_slider.param.watch(on_subtype_value_change, 'value')
|
1399 |
+
subtype_y_line_slider.param.watch(on_subtype_value_change, 'value')
|
1400 |
+
|
1401 |
+
# Layout
|
1402 |
+
plot_with_subtype_reconstruction = pn.Column(
|
1403 |
+
"## Select Files to Construct Dot Plot",
|
1404 |
+
subtype_checkbox_group,
|
1405 |
+
subtype_x_axis_dropdown,
|
1406 |
+
subtype_y_axis_dropdown,
|
1407 |
+
subtype_random_sample_input,
|
1408 |
+
pn.Row(subtype_x_line_slider, subtype_y_line_slider),
|
1409 |
+
pn.Row(
|
1410 |
+
pn.Column(
|
1411 |
+
"## Dot Plot",
|
1412 |
+
pn.Column(subtype_plot_placeholder)),
|
1413 |
+
pn.Column(
|
1414 |
+
"## Cell Subtype Digital Reconstruction Plot",
|
1415 |
+
subtype_reconstruction_placeholder),
|
1416 |
+
)
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
subtype_x_axis = subtype_x_axis_dropdown.value
|
1420 |
+
subtype_y_axis = subtype_y_axis_dropdown.value
|
1421 |
+
#print(subtype_x_axis ,subtype_y_axis)
|
1422 |
+
|
1423 |
+
|
1424 |
+
# Normalize the values in df2.cell_subtype
|
1425 |
+
df2['cell_subtype'] = df2['cell_subtype'].str.strip().str.lower()
|
1426 |
+
|
1427 |
+
# Normalize the keys in cell_subtype_color_dict
|
1428 |
+
cell_subtype_color_dict = {k.strip().lower(): v for k, v in cell_subtype_color_dict.items()}
|
1429 |
+
|
1430 |
+
# Map the cell_subtype values to colors
|
1431 |
+
cell_subtype_row_colors = df2.cell_subtype.map(cell_subtype_color_dict)
|
1432 |
+
|
1433 |
+
# Debugging: print the unique values and the resulting mapped colors
|
1434 |
+
#print("Unique values in df2.cell_subtype:", df2.cell_subtype.unique())
|
1435 |
+
#print("Keys in cell_subtype_color_dict:", cell_subtype_color_dict.keys())
|
1436 |
+
#print(cell_subtype_row_colors[1:5])
|
1437 |
+
data
|
1438 |
+
cell_subtype_color_dict
|
1439 |
+
# Remove the 'rgb' prefix
|
1440 |
+
|
1441 |
+
cell_subtype_color_dict = {k: v[3:] for k, v in cell_subtype_color_dict.items()}
|
1442 |
+
cell_subtype_color_dict
|
1443 |
+
|
1444 |
+
# Colors dictionaries
|
1445 |
+
sample_row_colors =df.Sample_ID.map(sample_color_dict)
|
1446 |
+
#print(sample_row_colors[1:5])
|
1447 |
+
|
1448 |
+
cell_subtype_row_colors = df.cell_subtype.map(cell_subtype_color_dict)
|
1449 |
+
#print(cell_subtype_row_colors[1:5])
|
1450 |
+
|
1451 |
+
# Count of each immune_checkpoint type by cell_subtype
|
1452 |
+
counts = df.groupby(['cell_type', 'cell_subtype']).size().reset_index(name='count')
|
1453 |
+
counts
|
1454 |
+
|
1455 |
+
total = sum(counts['count'])
|
1456 |
+
counts['percentage'] = counts.groupby('cell_subtype')['count'].transform(lambda x: (x / total) * 100)
|
1457 |
+
|
1458 |
+
#print(counts)
|
1459 |
+
|
1460 |
+
|
1461 |
+
# ## IV.10. SAVE
|
1462 |
+
|
1463 |
+
# Save the data by Sample_ID
|
1464 |
+
# Check for the existence of the output file first
|
1465 |
+
for sample in ls_samples:
|
1466 |
+
#sample_id = sample.split('_')[0]
|
1467 |
+
sample_id = sample
|
1468 |
+
filename = os.path.join(output_data_dir, sample_id + "_" + step_suffix + ".csv")
|
1469 |
+
if os.path.exists(filename):
|
1470 |
+
df_save = df.loc[df['Sample_ID'] == sample_id, :]
|
1471 |
+
df_save.to_csv(filename, index=True, index_label='ID', mode='w') # 'mode='w'' overwrites the file
|
1472 |
+
# print("File " + filename + " was overwritten!")
|
1473 |
+
else:
|
1474 |
+
df_save = df.loc[df['Sample_ID'] == sample_id, :]
|
1475 |
+
df_save.to_csv(filename, index=True, index_label='ID') # Save normally if the file doesn't exist
|
1476 |
+
# print("File " + filename + " was created and saved !")
|
1477 |
+
|
1478 |
+
# All samples
|
1479 |
+
filename = os.path.join(output_data_dir, "all_Samples_" + project_name + ".csv")
|
1480 |
+
# Save the DataFrame to a CSV file
|
1481 |
+
df.to_csv(filename, index=True, index_label='ID')
|
1482 |
+
#print("Merged file " + filename + " created!")
|
1483 |
+
|
1484 |
+
# ## Panel App
|
1485 |
+
# Create widgets and panes
|
1486 |
+
df_widget = pn.widgets.DataFrame(metadata, name="MetaData")
|
1487 |
+
# Define the three tabs content
|
1488 |
+
metadata_tab = pn.Column(pn.pane.Markdown("## Initial DataFrame"),intial_df)
|
1489 |
+
dotplot_tab = pn.Column(plot_with_reconstruction)
|
1490 |
+
celltype_classification_tab = pn.Column(cell_type_classification_app_main, threshold_panel)
|
1491 |
+
cellsubtype_classification_tab = pn.Column(cell_subtype_classification_app_main, subtype_threshold_panel)
|
1492 |
+
subtype_dotplot_tab = pn.Column(plot_with_subtype_reconstruction,)
|
1493 |
+
|
1494 |
+
app4_5 = pn.template.GoldenTemplate(
|
1495 |
+
site="Cyc-IF",
|
1496 |
+
title="Marker Threshold & Classification",
|
1497 |
+
main=[
|
1498 |
+
pn.Tabs(
|
1499 |
+
("Metadata", metadata_tab),
|
1500 |
+
("Classify-Celltype-Marker",celltype_classification_tab),
|
1501 |
+
("Cell_Types", dotplot_tab),
|
1502 |
+
("Classify-Cell Subtype-Marker",cellsubtype_classification_tab),
|
1503 |
+
("Cell-Subtypes", subtype_dotplot_tab),
|
1504 |
+
# ("Heatmap",pn.Column(celltype_heatmap, cell_subtype_heatmap))
|
1505 |
+
)
|
1506 |
+
]
|
1507 |
+
)
|
1508 |
+
app4_5.show()
|