Spaces:
Sleeping
Sleeping
File size: 31,006 Bytes
e70c547 1147d82 e70c547 1147d82 e70c547 1147d82 e70c547 c3ab6f2 e70c547 4b494f9 e70c547 4b494f9 e70c547 4b494f9 e70c547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 |
#!/usr/bin/env python
# coding: utf-8
import os
import random
import re
import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import matplotlib.colors as mplc
import subprocess
import warnings
from scipy import signal
from scipy.stats.stats import pearsonr
import plotly.figure_factory as ff
import plotly
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
import plotly.express as px
from my_modules import *
import panel as pn
#Silence FutureWarnings & UserWarnings
warnings.filterwarnings('ignore', category= FutureWarning)
warnings.filterwarnings('ignore', category= UserWarning)
# ## III.2. *DIRECTORIES
# In[4]:
# Set base directory
##### MAC WORKSTATION #####
#base_dir = r'/Volumes/LaboLabrie/Projets/OC_TMA_Pejovic/Temp/Zoe/CyCIF_pipeline/'
###########################
##### WINDOWS WORKSTATION #####
#base_dir = r'C:\Users\LaboLabrie\gerz2701\cyCIF-pipeline\Set_B'
###############################
##### LOCAL WORKSTATION #####
#base_dir = r'/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431'
#############################
present_dir = os.path.dirname(os.path.realpath(__file__))
input_path = os.path.join(present_dir, 'wetransfer_data-zip_2024-05-17_1431')
base_dir = input_path
#set_name = 'Set_A'
set_name = 'test'
# In[5]:
set_path = set_name
selected_metadata_files = "['Slide_B_DD1s1.one_1.tif.csv', 'Slide_B_DD1s1.one_2.tif.csv']"
ls_samples = "['Ashlar_Exposure_Time.csv', 'new_data.csv', 'DD3S1.csv', 'DD3S2.csv', 'DD3S3.csv', 'TMA.csv']"
print(base_dir)
print(set_path)
print(ls_samples)
print(selected_metadata_files)
project_name = set_name # Project name
step_suffix = 'zscore' # Curent part (here part III)
previous_step_suffix_long = "_bs" # Previous part (here BS NOTEBOOK)
# Initial input data directory
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
# ZSCORE/LOG2 output directories
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
# ZSCORE/LOG2 images subdirectory
output_images_dir = os.path.join(output_data_dir,"images")
# Data and Metadata directories
# Metadata directories
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
# images subdirectory
metadata_images_dir = os.path.join(metadata_dir,"images")
# Create directories if they don't already exist
for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
if not os.path.exists(d):
print("Creation of the" , d, "directory...")
os.makedirs(d)
else :
print("The", d, "directory already exists !")
os.chdir(input_data_dir)
# In[7]:
# Verify paths
print('base_dir :', base_dir)
print('input_data_dir :', input_data_dir)
print('output_data_dir :', output_data_dir)
print('output_images_dir :', output_images_dir)
print('metadata_dir :', metadata_dir)
print('metadata_images_dir :', metadata_images_dir)
# ## III.3. FILES
#Don't forget to put your data in the projname_data directory !
# ### III.3.1. METADATA
# In[8]:
# Import all metadata we need from the BS chapter
# METADATA
filename = "marker_intensity_metadata.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: "+filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
metadata = pd.read_csv(filename)
# Verify size with verify_line_no() function in my_modules.py
#verify_line_no(filename, metadata.shape[0] + 1)
# Verify headers
exp_cols = ['Round','Target','Channel','target_lower','full_column','marker','localisation']
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
metadata = metadata.dropna()
metadata.head()
# ### III.3.2. NOT_INTENSITIES
# In[9]:
filename = "not_intensities.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: "+filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
not_intensities = []
with open(filename, 'r') as fh:
not_intensities = fh.read().strip().split("\n")
# take str, strip whitespace, split on new line character
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, len(not_intensities))
# Print to console
print("not_intensities =\n", not_intensities)
pd.DataFrame(not_intensities)
# ### III.3.3. FULL_TO_SHORT_COLUMN_NAMES
# In[10]:
filename = "full_to_short_column_names.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: " + filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header = 0)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
full_to_short_names = df.set_index('full_name').T.to_dict('records')[0]
# CD45 instead of CD45b
if project_name == 'Slide_A' :
full_to_short_names['CD45_Cytoplasm_Intensity_Average'] = full_to_short_names.pop('CD45b_Cytoplasm_Intensity_Average')
full_to_short_names['CD45_Cytoplasm_Intensity_Average'] = 'CD45_Cytoplasm'
# Print information
print('full_to_short_names =\n',full_to_short_names)
# ### III.3.4. SHORT_TO_FULL_COLUMN_NAMES
# In[11]:
filename = "short_to_full_column_names.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: " + filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header = 0)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
short_to_full_names = df.set_index('short_name').T.to_dict('records')[0]
# CD45 instead of CD45b
if project_name == 'Slide_A' :
short_to_full_names['CD45_Cytoplasm'] = short_to_full_names.pop('CD45b_Cytoplasm')
short_to_full_names['CD45_Cytoplasm'] = 'CD45_Cytoplasm_Intensity_Average'
# Print information
print('short_to_full_names =\n',short_to_full_names)
# ### III.3.5. SAMPLES COLORS
# In[12]:
filename = "sample_color_data.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: " + filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header = 0)
df = df.drop(columns = ['hex'])
# our tuple of float values for rgb, (r, g, b) was read in
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
# substrings and convert them back into floats
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
sample_color_dict = df.set_index('Sample_ID')['rgb']
# Print information
print('sample_color_dict =\n',sample_color_dict)
# ### III.3.6. CHANNELS COLORS
# In[13]:
filename = "channel_color_data.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: "+filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header = 0)
df = df.drop(columns = ['hex'])
# our tuple of float values for rgb, (r, g, b) was read in
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
# substrings and convert them back into floats
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
channel_color_dict = df.set_index('Channel')['rgb']
# Print information
print('channel_color_dict =\n',channel_color_dict)
# ### III.3.7. ROUNDS COLORS
# In[14]:
# ROUND
filename = "round_color_data.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: "+filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header = 0)
df = df.drop(columns = ['hex'])
# our tuple of float values for rgb, (r, g, b) was read in
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
# substrings and convert them back into floats
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
round_color_dict = df.set_index('Round')['rgb']
# Print information
print('round_color_dict =\n',round_color_dict)
# ### III.3.8. CELL TYPES COLORS
# In[15]:
data = pd.read_csv(os.path.join(metadata_dir, 'celltype_color_data.csv'))
data
# In[16]:
filename = "celltype_color_data.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: "+filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header = 0)
#df = df.drop(columns = ['hex'])
# Assuming the RGB values are already in separate columns 'R', 'G', 'B'
if all(col in df.columns for col in ['R', 'G', 'B']):
# Create the 'rgb' column as tuples of floats
df['rgb'] = list(zip(df['R'], df['G'], df['B']))
# our tuple of float values for rgb, (r, g, b) was read in
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
# substrings and convert them back into floats
#df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
cell_type_color_dict = df.set_index('cell_type')['rgb']
# Print information
print('cell_type_color_dict =\n',cell_type_color_dict)
# ### III.3.9. CELL SUBTYPES COLORS
# In[17]:
df = pd.read_csv(filename)
df.head()
# In[18]:
filename = "cellsubtype_color_data.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: "+filename)
else :
print("The",filename,"file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header = 0)
df = df.drop(columns = ['hex'])
# our tuple of float values for rgb, (r, g, b) was read in
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
# substrings and convert them back into floats
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
cell_subtype_color_dict = df.set_index('cell_subtype')['rgb'].to_dict()
# Print information
print('cell_subtype_color_dict =\n',cell_subtype_color_dict)
# In[19]:
df = pd.read_csv(filename)
df.head()
# ### III.3.10. IMMUNE CHECKPOINT COLORS
# In[20]:
filename = "immunecheckpoint_color_data.csv"
filename = os.path.join(metadata_dir, filename)
# Check file exists
if not os.path.exists(filename):
print("WARNING: Could not find desired file: "+filename)
else:
print("The", filename, "file was imported for further analysis!")
# Open, read in information
df = pd.read_csv(filename, header=0)
df = df.drop(columns=['hex'])
# Convert the 'rgb' column from string to tuple
df['rgb'] = df['rgb'].apply(rgb_tuple_from_str)
# Verify size
print("Verifying data read from file is the correct length...\n")
#verify_line_no(filename, df.shape[0] + 1)
# Turn into dictionary
immune_checkpoint_color_dict = df.set_index('immune_checkpoint')['rgb'].to_dict()
# Print information
print('immune_checkpoint_color_dict =\n', immune_checkpoint_color_dict)
immune_checkpoint_color_df = pd.DataFrame(immune_checkpoint_color_dict)
immune_checkpoint_color_df
# ### III.3.10. DATA
# In[21]:
# DATA
# List files in the directory
# Check if the directory exists
if os.path.exists(input_data_dir):
# List files in the directory
ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith("_bs.csv")]
print("The following CSV files were detected:")
print([sample for sample in ls_samples])
else:
print(f"The directory {input_data_dir} does not exist.")
# In[22]:
# Import all the others files
dfs = {}
# Set variable to hold default header values
# First gather information on expected headers using first file in ls_samples
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)
expected_headers = df.columns.values
#print(expected_headers)
###############################
# !! This may take a while !! #
###############################
for sample in ls_samples:
file_path = os.path.join(input_data_dir,sample)
print(file_path)
try:
# Read the CSV file
df = pd.read_csv(file_path, index_col=0)
# Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
if not df.empty:
# Reorder the columns to match the expected headers list
df = df.reindex(columns=expected_headers)
print(sample, "file is processed !\n")
#print(df)
except pd.errors.EmptyDataError:
print(f'\nEmpty data error in {sample} file. Removing from analysis...')
ls_samples.remove(sample)
# Add df to dfs
dfs[sample] = df
#print(dfs)
# In[23]:
# Merge dfs into one df
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
del dfs
merged_df = df
# In[24]:
merged_df
# In[25]:
merged_df_shape = df.shape
# In[26]:
merged_df_index =df.index
# In[27]:
merged_df_col_values = df.columns.values
# In[28]:
# Check for NaN entries (should not be any unless columns do not align)
# False means no NaN entries
# True means NaN entries
merged_df_null_values = df.isnull().any().any()
# In[29]:
df.isnull().any().any()
# ## III.4. MARKERS
# In[30]:
# Listing all the markers of interest for downstream analyses
# !!TODO WITH MARILYNE!!
markers = [
'53BP1_Nucleus_Intensity_Average',
'AR_Nucleus_Intensity_Average',
'CCNB1_Cell_Intensity_Average',
'CCND1_Nucleus_Intensity_Average',
'CCNE_Nucleus_Intensity_Average',
'CD31_Cytoplasm_Intensity_Average',
'CKs_Cytoplasm_Intensity_Average',
'ERa_Nucleus_Intensity_Average',
'Ecad_Cytoplasm_Intensity_Average',
'GATA3_Nucleus_Intensity_Average',
'H3K27_Nucleus_Intensity_Average',
'H3K4me3_Nucleus_Intensity_Average',
'HER2_Cytoplasm_Intensity_Average',
'HSP90_Cell_Intensity_Average',
'Ki67_Nucleus_Intensity_Average',
'PAX8_Nucleus_Intensity_Average',
'PCNA_Nucleus_Intensity_Average',
'PRg_Nucleus_Intensity_Average',
'S100b_Cytoplasm_Intensity_Average',
'TP53_Cell_Intensity_Average',
'Vimentin_Cytoplasm_Intensity_Average',
'pAKT_Cytoplasm_Intensity_Average',
'pATM_Nucleus_Intensity_Average',
'pATR_Nucleus_Intensity_Average',
'pERK_Cell_Intensity_Average',
'pRB_Nucleus_Intensity_Average',
'pS6_Cytoplasm_Intensity_Average',
'AXL_Cytoplasm_Intensity_Average',
'B7H4_Cell_Intensity_Average',
'CD11c_Cytoplasm_Intensity_Average',
'CD163_Cytoplasm_Intensity_Average',
'CD20_Cytoplasm_Intensity_Average',
'CD31_Cytoplasm_Intensity_Average',
'CD44_Cytoplasm_Intensity_Average',
'CD45_Cytoplasm_Intensity_Average',
'CD45b_Cytoplasm_Intensity_Average',
'CD4_Cytoplasm_Intensity_Average',
'CD68_Cytoplasm_Intensity_Average',
'CD8_Cytoplasm_Intensity_Average',
'CKs_Cytoplasm_Intensity_Average',
'ColVI_Cytoplasm_Intensity_Average',
'Desmin_Cytoplasm_Intensity_Average',
'Ecad_Cytoplasm_Intensity_Average',
'FOXP3_Nucleus_Intensity_Average',
'Fibronectin_Cytoplasm_Intensity_Average',
'GATA3_Nucleus_Intensity_Average',
'HLA_Cytoplasm_Intensity_Average',
'Ki67_Nucleus_Intensity_Average',
'MMP9_Cytoplasm_Intensity_Average',
'PD1_Cytoplasm_Intensity_Average',
'PDGFR_Cytoplasm_Intensity_Average',
'PDL1_Cytoplasm_Intensity_Average',
'Sting_Cytoplasm_Intensity_Average',
'Vimentin_Cytoplasm_Intensity_Average',
'aSMA_Cytoplasm_Intensity_Average'
]
# In[31]:
# Check if all columns in the markers list are present in the DataFrame
missing_columns = [col for col in markers if col not in df.columns]
if missing_columns:
# If columns are missing that can be because the markers may be present in the other slide
print(f"The following columns are not present in the DataFrame ({len(missing_columns)} columns missing): \n{missing_columns}\n")
# Filter the DataFrame to keep only the columns that are in the markers list and also exist in the DataFrame
intersected_columns = list(set(markers).intersection(df.columns))
df_markers = df[intersected_columns]
else:
# Filter the DataFrame to keep only the columns in the markers list
df_markers = df[markers]
initial_df_marker = df_markers
df_markers.head()
# In[32]:
# Rename CD45b into CD45 (Slide A!)
if project_name == 'Slide_A' :
df_markers.rename(columns={"CD45b_Cytoplasm_Intensity_Average": "CD45_Cytoplasm_Intensity_Average"}, inplace=True)
df_markers.columns.values
# In[33]:
df_markers.shape
# In[34]:
min_values = df_markers.min().tolist()
min_values
# In[35]:
# Keep not_intensities and markers columns
# Combine both lists
combined_columns = list(set(markers) | set(not_intensities))
# Filter the DataFrame to keep only the combined columns present in both df and combined_columns
df_markers_not_intensities = df[df.columns.intersection(combined_columns)]
# In[36]:
df_markers_not_intensities
# In[37]:
df_markers_not_intensities.shape
# ## III.5. NORMALISATION
# In[38]:
df_markers.min().tolist()
# In[39]:
'''# LOG2 TRANFORMATION
#Values need to be higher than 0 for Log2 transformation.
print("df_marker.shape before normalisation: ", df_markers.shape)
df_marker_shape_before_norm = df_markers.shape
# Option 1
# This step might not be the best approach because in creates pattern in the data.
# set anything that is below 0 to 0, so that we can do the log transform, +1 to all columns
#for f in df_markers.columns[~df_markers.columns.isin(not_intensities)]:
#df_markers.loc[df_markers[f] < 0,f] = 0
#option2
# Add the min from min values (from above) +1 to all columns
#df_markers.loc[:, ~df_markers.columns.isin(not_intensities)] = \
#df_markers.loc[:,~df_markers.columns.isin(not_intensities)].copy() + 1
# Add the minimum value + 1 to each column
# OR'''
# In[40]:
min_value = df_markers.min().min()
print("min value = ", min_value)
df_markers = df_markers + (np.abs(min_value))
# +1
df_markers = df_markers + 1
df_after_norm = df_markers
df_marker_shape_after_norm = df_markers.shape
print("df_markers.shape after normalisation: ", df_markers.shape)
df_markers.min().tolist()
# Apply log2
df_markers.loc[:,~df_markers.columns.isin(not_intensities)] = \
np.log2(df_markers.loc[:, ~df_markers.columns.isin(not_intensities)])
print('log2 transform finished')
df_markers
# In[75]:
#main
pn.extension()
not_intensities = [] # Add columns to exclude from transformation if any
# Define transformation functions
def modify(df):
min_value = df.min().min()
df = df + (np.abs(min_value))
df = df + 1
df.loc[:, ~df.columns.isin(not_intensities)] = np.log2(df.loc[:, ~df.columns.isin(not_intensities)])
return df
def shift(df):
df.loc[:, ~df.columns.isin(not_intensities)] = np.log2(df.loc[:, ~df.columns.isin(not_intensities)])
return df
# Define the panel widgets
operation = pn.widgets.RadioButtonGroup(name='Operation', options=['Modify', 'Shift'], button_type='success')
# Define a function to update the DataFrame based on the selected operation
def update_dataframe(operation):
df = df_markers.copy()
if operation == 'Modify':
modified_df = modify(df)
elif operation == 'Shift':
modified_df = shift(df)
return modified_df.head(30)
# Create a panel layout
layout = pn.Column(
pn.pane.Markdown("### Data Transformation"),
operation,
pn.pane.Markdown("### Transformed DataFrame"),
pn.bind(lambda op: update_dataframe(op), operation)
)
#df_after_norm
df_markers.columns.tolist()
# Check for NaN entries (should not be any unless columns do not align)
# False means no NaN entries
# True means NaN entries
df_markers.isnull().any().any()
count_nan_in_df_markers = df_markers.isnull().sum().sum()
print(count_nan_in_df_markers)
# ## III.6. Z-SCORE TRANSFORMATION
# In[49]:
# Filter the DataFrame df to keep only the columns specified in the not_intensities list
#df = df.loc[:, not_intensities]
#df
# Check if all columns in the markers list are present in the DataFrame
missing_columns = [col for col in not_intensities if col not in df.columns]
if missing_columns:
print(f"The following columns are not present in the DataFrame ({len(missing_columns)} columns missing): \
\n{missing_columns}")
# Filter the DataFrame to keep only the columns that are in the markers list and also exist in the DataFrame
intersected_columns = list(set(not_intensities).intersection(df.columns))
df = df[intersected_columns]
else:
# Filter the DataFrame to keep only the columns in the markers list
df.loc[:, not_intensities]
df
# In[50]:
df
# In[51]:
df_merged = df_markers.merge(df, left_index=True, right_on='ID', how='left')
df_merged
# In[52]:
df_merged.columns.tolist()
# In[53]:
# Create a copy, just in case you need to restart the kernel
df_merged_copy = df_merged
# In[54]:
# Filters the rows of the DataFrame df_merged based on the values in the 'Sample_ID' column
# df_subset will contain a subset of rows from df_merged where the 'Sample_ID' matches the values in the list 'keep' ('TMA.csv' in this case)
keep = ['TMA.csv']
df_subset = df_merged.loc[df_merged['Sample_ID'].isin(keep),:].copy()
df_subset
# In[55]:
# Convert the DataFrame to numeric, forcing errors to NaN
df_numeric = df_subset.apply(pd.to_numeric, errors='coerce')
# Z-score normalization
# Z-score the rows (apply() with axis = 1, only perform on intensity data)
# Apply Z-score normalization only on numeric columns
df_subset.loc[:, ~df_subset.columns.isin(not_intensities)] = \
df_numeric.loc[:, ~df_numeric.columns.isin(not_intensities)].apply(
lambda row: (row - row.median()) / row.std(ddof=0), axis=1)
# Drop columns with all NaN values (if any)
df_subset.dropna(how='all', inplace=True, axis=1)
print('zscore rows finished')
###############################
# !! This may take a while !! #
###############################
'''df_subset.loc[:,~df_subset.columns.isin(not_intensities)] = \
df_subset.loc[:,~df_subset.columns.isin(not_intensities)].apply(
lambda row: (row - row.median())/(row.std(ddof=0)), axis = 1)
df_subset.dropna(how = 'all', inplace = True, axis = 1)
print('zscore rows finished')'''
# In[56]:
df_subset
df_numeric = df_merged.apply(pd.to_numeric, errors='coerce')
# Z-score the rows (apply() with axis = 1, only perform on intensity data)
###############################
# !! This may take a while !! #
###############################
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
df_numeric.loc[:,~df_numeric.columns.isin(not_intensities)].apply(
lambda row: (row - row.median())/(row.std(ddof=0)), axis = 1)
df_merged.dropna(how = 'all', inplace = True, axis = 1)
print('zscore rows finished')
'''# Z-score the rows (apply() with axis = 1, only perform on intensity data)
###############################
# !! This may take a while !! #
###############################
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
df_merged.loc[:,~df_merged.columns.isin(not_intensities)].apply(
lambda row: (row - row.median())/(row.std(ddof=0)), axis = 1)
df_merged.dropna(how = 'all', inplace = True, axis = 1)
print('zscore rows finished')'''
df_merged
# In[59]:
# Ensuring that the selected columns in df have been adjusted or normalized using the median values
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] - df_subset.loc[:,~df_subset.columns.isin(not_intensities)].median()
df_merged
# In[60]:
df_merged_zscore = df_merged.loc[:,~df_merged.columns.isin(not_intensities)] = \
df_merged.loc[:,~df_merged.columns.isin(not_intensities)] / df_subset.loc[:,~df_subset.columns.isin(not_intensities)].std(ddof=0)
df_merged_zscore
# In[61]:
# Check for NaN entries (should not be any unless columns do not align)
# False means no NaN entries
# True means NaN entries
df.isnull().any().any()
# In[62]:
quality_control_df = df_merged_zscore
# In[63]:
def check_index_format(index_str, ls_samples):
"""
Checks if the given index string follows the specified format.
Args:
index_str (str): The index string to be checked.
ls_samples (list): A list of valid sample names.
Returns:
bool: True if the index string follows the format, False otherwise.
"""
# Split the index string into parts
parts = index_str.split('_')
# Check if there are exactly 3 parts
if len(parts) != 3:
print(len(parts))
return False
# Check if the first part is in ls_samples
sample_name = parts[0]
if f'{sample_name}_bs.csv' not in ls_samples:
print(sample_name)
return False
# Check if the second part is in ['cell', 'cytoplasm', 'nucleus']
location = parts[1]
valid_locations = ['Cell', 'Cytoplasm', 'Nucleus']
if location not in valid_locations:
print(location)
return False
# Check if the third part is a number
try:
index = int(parts[2])
except ValueError:
print(index)
return False
# If all checks pass, return True
return True
# Let's take a look at a few features to make sure our dataframe is as expected
def check_format_ofindex(index):
for index in df.index:
check_index = check_index_format(index, ls_samples)
if check_index is False:
index_format = "Bad"
return index_format
index_format = "Good"
return index_format
# In[64]:
import panel as pn
import pandas as pd
def quality_check(file, not_intensities):
# Load the output file
df = file
# Check Index
check_index = check_format_ofindex(df.index)
# Check Shape
check_shape = df.shape
# Check for NaN entries
check_no_null = df.isnull().any().any()
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
if (mean_intensity == 0).any():
df = df.loc[mean_intensity > 0, :]
print("df.shape after removing 0 mean values: ", df.shape)
check_zero_intensities = f'Shape after removing 0 mean values: {df.shape}'
else:
print("No zero intensity values.")
check_zero_intensities = "No zero intensity values."
# Create a quality check results table
quality_check_results_table = pd.DataFrame({
'Check': ['Index', 'Shape', 'Check for NaN Entries', 'Check for Zero Intensities'],
'Result': [str(check_index), str(check_shape), str(check_no_null), check_zero_intensities]
})
# Create a quality check results component
quality_check_results_component = pn.Card(
pn.pane.DataFrame(quality_check_results_table),
title="Quality Control Results",
header_background="#2196f3",
header_color="white",
)
return quality_check_results_component
# In[76]:
import panel as pn
# Assuming your DataFrames are already defined as:
# metadata, merged_df, initial_df_marker, df_markers_not_intensities, df_after_norm,
# df_markers, df_subset, df_merged_zscore
# Create widgets and panes
df_widget = pn.widgets.DataFrame(metadata, name="MetaData")
# Define the three tabs content
metadata_tab = pn.Column(
pn.pane.Markdown("### Sample Metadata"),
pn.pane.DataFrame(metadata.head()),
pn.pane.Markdown("### Intial Dataframe"),
pn.pane.DataFrame(initial_df_marker.head(), width = 1500),
pn.Row(pn.pane.Markdown("### Shape: "), pn.pane.Markdown(str(merged_df.shape))),
pn.pane.Markdown("### Merged Dataframe"),
pn.pane.DataFrame(merged_df.head(), width = 1500),
pn.Row(pn.pane.Markdown("### Shape: "), pn.pane.Markdown(str(initial_df_marker.shape))),
pn.pane.Markdown("### Markers and not intensities Dataframe"),
pn.pane.DataFrame(df_markers_not_intensities.head(), width = 1500),
pn.Row(pn.pane.Markdown("### Shape: "),
pn.pane.Markdown(str(df_markers_not_intensities.shape)))
)
normalization_tab = pn.Column(
#pn.pane.Markdown("### Normalisation performed"),
#pn.pane.DataFrame(df_after_norm.head()),
#pn.Row(pn.pane.Markdown("### Shape before normalization: ")),
#pn.pane.Markdown(str(df_marker_shape_before_norm))),
#pn.Row(pn.pane.Markdown("### Shape after normalization: ")),
#pn.pane.Markdown(str(df_marker_shape_after_norm))),
#pn.pane.Markdown("### Performed log 2 transformation"),
#pn.pane.DataFrame(df_markers.head())
layout
)
zscore_tab = pn.Column(
#pn.pane.Markdown("### Performed Z-score transformation"),
#pn.pane.DataFrame(df_subset.head(), width = 1500),
pn.pane.Markdown("### Z-score transformation finished"),
pn.pane.DataFrame(df_merged_zscore.head(30), width = 1500)
)
quality_control_tab = pn.Column(
pn.pane.Markdown("### Quality Control"),
quality_check(quality_control_df, not_intensities)
)
# Create the GoldenTemplate
app3 = pn.template.GoldenTemplate(
site="Cyc-IF",
title="Z-Score Computation",
main=[
pn.Tabs(
("Metadata", metadata_tab),
("Normalization", normalization_tab),
("Z-Score", zscore_tab),
("Quality Control", quality_control_tab)
)
]
)
app3.servable()
if __name__ == "__main__":
pn.serve(app3, port=5007)
|