Spaces:
Runtime error
Runtime error
File size: 12,593 Bytes
b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
from typing import Optional, Tuple, Union
import mmcv
import mmengine
import numpy as np
import pycocotools.mask as maskUtils
import torch
from mmcv.transforms.base import BaseTransform
from mmdet.registry import TRANSFORMS
from mmdet.datasets.transforms import LoadAnnotations as MMDET_LoadAnnotations
from mmdet.structures.bbox import autocast_box_type
from mmdet.structures.mask import BitmapMasks
from mmdet.datasets.transforms import LoadPanopticAnnotations
from mmengine.fileio import get
from seg.models.utils import NO_OBJ
@TRANSFORMS.register_module()
class LoadPanopticAnnotationsHB(LoadPanopticAnnotations):
def _load_masks_and_semantic_segs(self, results: dict) -> None:
"""Private function to load mask and semantic segmentation annotations.
In gt_semantic_seg, the foreground label is from ``0`` to
``num_things - 1``, the background label is from ``num_things`` to
``num_things + num_stuff - 1``, 255 means the ignored label (``VOID``).
Args:
results (dict): Result dict from :obj:``mmdet.CustomDataset``.
"""
# seg_map_path is None, when inference on the dataset without gts.
if results.get('seg_map_path', None) is None:
return
img_bytes = get(
results['seg_map_path'], backend_args=self.backend_args)
pan_png = mmcv.imfrombytes(
img_bytes, flag='color', channel_order='rgb').squeeze()
pan_png = self.rgb2id(pan_png)
gt_masks = []
gt_seg = np.zeros_like(pan_png).astype(np.int32) + NO_OBJ # 255 as ignore
for segment_info in results['segments_info']:
mask = (pan_png == segment_info['id'])
gt_seg = np.where(mask, segment_info['category'], gt_seg)
# The legal thing masks
if segment_info.get('is_thing'):
gt_masks.append(mask.astype(np.uint8))
if self.with_mask:
h, w = results['ori_shape']
gt_masks = BitmapMasks(gt_masks, h, w)
results['gt_masks'] = gt_masks
if self.with_seg:
results['gt_seg_map'] = gt_seg
@TRANSFORMS.register_module()
class LoadVideoSegAnnotations(LoadPanopticAnnotations):
def __init__(
self,
**kwargs
) -> None:
super().__init__(**kwargs)
def _load_instances_ids(self, results: dict) -> None:
"""Private function to load instances id annotations.
Args:
results (dict): Result dict from :obj :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict containing instances id annotations.
"""
gt_instances_ids = []
for instance in results['instances']:
gt_instances_ids.append(instance['instance_id'])
results['gt_instances_ids'] = np.array(
gt_instances_ids, dtype=np.int32)
def _load_masks_and_semantic_segs(self, results: dict) -> None:
h, w = results['ori_shape']
gt_masks = []
gt_seg = np.zeros((h, w), dtype=np.int32) + NO_OBJ
for segment_info in results['segments_info']:
mask = maskUtils.decode(segment_info['mask'])
gt_seg = np.where(mask, segment_info['category'], gt_seg)
# The legal thing masks
if segment_info.get('is_thing'):
gt_masks.append(mask.astype(np.uint8))
if self.with_mask:
h, w = results['ori_shape']
gt_masks = BitmapMasks(gt_masks, h, w)
results['gt_masks'] = gt_masks
if self.with_seg:
results['gt_seg_map'] = gt_seg
def transform(self, results: dict) -> dict:
"""Function to load multiple types panoptic annotations.
Args:
results (dict): Result dict from :obj:``mmdet.CustomDataset``.
Returns:
dict: The dict contains loaded bounding box, label, mask and
semantic segmentation annotations.
"""
super().transform(results)
self._load_instances_ids(results)
return results
@TRANSFORMS.register_module()
class LoadJSONFromFile(BaseTransform):
"""Load an json from file.
Required Keys:
- info_path
Modified Keys:
Args:
backend_args (dict, optional): Instantiates the corresponding file
backend. It may contain `backend` key to specify the file
backend. If it contains, the file backend corresponding to this
value will be used and initialized with the remaining values,
otherwise the corresponding file backend will be selected
based on the prefix of the file path. Defaults to None.
New in version 2.0.0rc4.
"""
def __init__(self, backend_args: Optional[dict] = None) -> None:
self.backend_args: Optional[dict] = None
if backend_args is not None:
self.backend_args = backend_args.copy()
def transform(self, results: dict) -> Optional[dict]:
"""Functions to load image.
Args:
results (dict): Result dict from
:class:`mmengine.dataset.BaseDataset`.
Returns:
dict: The dict contains loaded image and meta information.
"""
filename = results['info_path']
data_info = mmengine.load(filename, backend_args=self.backend_args)
results['height'] = data_info['image']['height']
results['width'] = data_info['image']['width']
# The code here are similar to `parse_data_info` in coco
instances = []
for ann in sorted(data_info['annotations'], key=lambda x: -x['area']):
instance = {}
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, results['width']) - max(x1, 0))
inter_h = max(0, min(y1 + h, results['height']) - max(y1, 0))
if inter_w * inter_h == 0:
continue
if ann['area'] <= 0 or w < 1 or h < 1:
continue
bbox = [x1, y1, x1 + w, y1 + h]
instance['ignore_flag'] = 0
instance['bbox'] = bbox
instance['bbox_label'] = 0
if ann.get('segmentation', None):
instance['mask'] = ann['segmentation']
if ann.get('point_coords', None):
instance['point_coords'] = ann['point_coords']
instances.append(instance)
results['instances'] = instances
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f'backend_args={self.backend_args})')
return repr_str
@TRANSFORMS.register_module()
class LoadAnnotationsSAM(MMDET_LoadAnnotations):
def __init__(self, *args, with_point_coords=False, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.with_point_coords = with_point_coords
def _load_point_coords(self, results: dict) -> None:
assert self.with_point_coords
gt_point_coords = []
for instance in results.get('instances', []):
gt_point_coords.append(instance['point_coords'])
results['gt_point_coords'] = np.array(gt_point_coords, dtype=np.float32)
def transform(self, results: dict) -> Optional[dict]:
super().transform(results)
if self.with_point_coords:
self._load_point_coords(results)
return results
@TRANSFORMS.register_module()
class FilterAnnotationsHB(BaseTransform):
"""Filter invalid annotations.
Required Keys:
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_masks (BitmapMasks | PolygonMasks) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_masks (optional)
- gt_ignore_flags (optional)
Args:
min_gt_bbox_wh (tuple[float]): Minimum width and height of ground truth
boxes. Default: (1., 1.)
min_gt_mask_area (int): Minimum foreground area of ground truth masks.
Default: 1
by_box (bool): Filter instances with bounding boxes not meeting the
min_gt_bbox_wh threshold. Default: True
by_mask (bool): Filter instances with masks not meeting
min_gt_mask_area threshold. Default: False
keep_empty (bool): Whether to return None when it
becomes an empty bbox after filtering. Defaults to True.
"""
def __init__(self,
min_gt_bbox_wh: Tuple[int, int] = (1, 1),
min_gt_mask_area: int = 1,
by_box: bool = True,
by_mask: bool = False) -> None:
assert by_box or by_mask
self.min_gt_bbox_wh = min_gt_bbox_wh
self.min_gt_mask_area = min_gt_mask_area
self.by_box = by_box
self.by_mask = by_mask
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""Transform function to filter annotations.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
assert 'gt_bboxes' in results
gt_bboxes = results['gt_bboxes']
if gt_bboxes.shape[0] == 0:
return None
tests = []
if self.by_box:
tests.append(
((gt_bboxes.widths > self.min_gt_bbox_wh[0]) &
(gt_bboxes.heights > self.min_gt_bbox_wh[1])).numpy())
if self.by_mask:
assert 'gt_masks' in results
gt_masks = results['gt_masks']
tests.append(gt_masks.areas >= self.min_gt_mask_area)
keep = tests[0]
for t in tests[1:]:
keep = keep & t
results['gt_ignore_flags'] = np.logical_or(results['gt_ignore_flags'], np.logical_not(keep))
if results['gt_ignore_flags'].all():
return None
return results
def __repr__(self):
return self.__class__.__name__
@TRANSFORMS.register_module()
class GTNMS(BaseTransform):
def __init__(self,
by_box: bool = True,
by_mask: bool = False
) -> None:
assert by_box or by_mask and not (by_box and by_mask)
self.by_box = by_box
self.by_mask = by_mask
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""Transform function to filter annotations.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
gt_ignore_flags = results['gt_ignore_flags']
if self.by_box:
raise NotImplementedError
if self.by_mask:
assert 'gt_masks' in results
gt_masks = results['gt_masks'].masks
tot_mask = np.zeros_like(gt_masks[0], dtype=np.uint8)
for idx, mask in enumerate(gt_masks):
if gt_ignore_flags[idx]:
continue
overlapping = mask * tot_mask
ratio = overlapping.sum() / sum(mask).sum()
if ratio > 0.8:
# ignore with overlapping
gt_ignore_flags[idx] = True
continue
tot_mask = (tot_mask + mask).clip(max=1)
results['gt_ignore_flags'] = gt_ignore_flags
return results
def __repr__(self):
return self.__class__.__name__
@TRANSFORMS.register_module()
class LoadFeatFromFile(BaseTransform):
def __init__(self, model_name='vit_h'):
self.cache_suffix = f'_{model_name}_cache.pth'
def transform(self, results: dict) -> Optional[dict]:
img_path = results['img_path']
feat_path = img_path.replace('.jpg', self.cache_suffix)
assert mmengine.exists(feat_path)
feat = torch.load(feat_path)
results['feat'] = feat
return results
def __repr__(self):
repr_str = f'{self.__class__.__name__}'
return repr_str
@TRANSFORMS.register_module()
class ResizeOri(BaseTransform):
def __init__(
self,
backend: str = 'cv2',
interpolation='bilinear'
):
self.backend = backend
self.interpolation = interpolation
def transform(self, results: dict) -> Optional[dict]:
results['ori_shape'] = results['img_shape']
results['scale_factor'] = (1., 1.)
return results
def __repr__(self):
repr_str = f'{self.__class__.__name__}'
return repr_str
|