Spaces:
Runtime error
Runtime error
File size: 10,339 Bytes
b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from typing import Optional, Sequence, List
import torch
import random
import numpy as np
from mmcv.transforms import to_tensor
from mmcv.transforms.base import BaseTransform
from mmdet.datasets.transforms import PackDetInputs
from mmdet.structures.bbox import BaseBoxes
from mmengine.structures import InstanceData, PixelData
from mmdet.registry import TRANSFORMS
from mmdet.structures import DetDataSample, TrackDataSample
@TRANSFORMS.register_module()
class PackVidSegInputs(BaseTransform):
"""Pack the inputs data for the multi object tracking and video instance
segmentation. All the information of images are packed to ``inputs``. All
the information except images are packed to ``data_samples``. In order to
get the original annotaiton and meta info, we add `instances` key into meta
keys.
Args:
meta_keys (Sequence[str]): Meta keys to be collected in
``data_sample.metainfo``. Defaults to None.
default_meta_keys (tuple): Default meta keys. Defaults to ('img_id',
'img_path', 'ori_shape', 'img_shape', 'scale_factor',
'flip', 'flip_direction', 'frame_id', 'is_video_data',
'video_id', 'video_length', 'instances').
"""
mapping_table = {
'gt_bboxes': 'bboxes',
'gt_bboxes_labels': 'labels',
'gt_masks': 'masks',
'gt_instances_ids': 'instances_ids'
}
def __init__(self,
meta_keys: Optional[dict] = None,
default_meta_keys: tuple = ('img_id', 'img_path', 'ori_shape',
'img_shape', 'scale_factor',
'flip', 'flip_direction',
'frame_id', 'video_id',
'video_length',
'ori_video_length', 'instances')):
self.meta_keys = default_meta_keys
if meta_keys is not None:
if isinstance(meta_keys, str):
meta_keys = (meta_keys,)
else:
assert isinstance(meta_keys, tuple), \
'meta_keys must be str or tuple'
self.meta_keys += meta_keys
def transform(self, results: dict) -> dict:
"""Method to pack the input data.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict:
- 'inputs' (dict[Tensor]): The forward data of models.
- 'data_samples' (obj:`TrackDataSample`): The annotation info of
the samples.
"""
packed_results = dict()
packed_results['inputs'] = dict()
# 1. Pack images
if 'img' in results:
imgs = results['img']
imgs = np.stack(imgs, axis=0)
imgs = imgs.transpose(0, 3, 1, 2)
packed_results['inputs'] = to_tensor(imgs)
# 2. Pack InstanceData
if 'gt_ignore_flags' in results:
gt_ignore_flags_list = results['gt_ignore_flags']
valid_idx_list, ignore_idx_list = [], []
for gt_ignore_flags in gt_ignore_flags_list:
valid_idx = np.where(gt_ignore_flags == 0)[0]
ignore_idx = np.where(gt_ignore_flags == 1)[0]
valid_idx_list.append(valid_idx)
ignore_idx_list.append(ignore_idx)
assert 'img_id' in results, "'img_id' must contained in the results "
'for counting the number of images'
num_imgs = len(results['img_id'])
instance_data_list = [InstanceData() for _ in range(num_imgs)]
ignore_instance_data_list = [InstanceData() for _ in range(num_imgs)]
for key in self.mapping_table.keys():
if key not in results:
continue
if key == 'gt_masks' or (isinstance(results[key], List) and isinstance(results[key][0], BaseBoxes)):
mapped_key = self.mapping_table[key]
gt_masks_list = results[key]
if 'gt_ignore_flags' in results:
for i, gt_mask in enumerate(gt_masks_list):
valid_idx, ignore_idx = valid_idx_list[
i], ignore_idx_list[i]
instance_data_list[i][mapped_key] = gt_mask[valid_idx]
ignore_instance_data_list[i][mapped_key] = gt_mask[
ignore_idx]
else:
for i, gt_mask in enumerate(gt_masks_list):
instance_data_list[i][mapped_key] = gt_mask
else:
anns_list = results[key]
if 'gt_ignore_flags' in results:
for i, ann in enumerate(anns_list):
valid_idx, ignore_idx = valid_idx_list[
i], ignore_idx_list[i]
instance_data_list[i][
self.mapping_table[key]] = to_tensor(
ann[valid_idx])
ignore_instance_data_list[i][
self.mapping_table[key]] = to_tensor(
ann[ignore_idx])
else:
for i, ann in enumerate(anns_list):
instance_data_list[i][
self.mapping_table[key]] = to_tensor(ann)
det_data_samples_list = []
for i in range(num_imgs):
det_data_sample = DetDataSample()
det_data_sample.gt_instances = instance_data_list[i]
det_data_sample.ignored_instances = ignore_instance_data_list[i]
if 'proposals' in results:
proposals = InstanceData(
bboxes=to_tensor(results['proposals'][i]),
scores=to_tensor(results['proposals_scores'][i]))
det_data_sample.proposals = proposals
if 'gt_seg_map' in results:
gt_sem_seg_data = dict(
sem_seg=to_tensor(results['gt_seg_map'][i][None, ...].copy()))
gt_sem_seg_data = PixelData(**gt_sem_seg_data)
if 'ignore_index' in results:
metainfo = dict(ignore_index=results['ignore_index'][i])
gt_sem_seg_data.set_metainfo(metainfo)
det_data_sample.gt_sem_seg = gt_sem_seg_data
det_data_samples_list.append(det_data_sample)
# 3. Pack metainfo
for key in self.meta_keys:
if key not in results:
continue
img_metas_list = results[key]
for i, img_meta in enumerate(img_metas_list):
det_data_samples_list[i].set_metainfo({f'{key}': img_meta})
track_data_sample = TrackDataSample()
track_data_sample.video_data_samples = det_data_samples_list
if 'key_frame_flags' in results:
key_frame_flags = np.asarray(results['key_frame_flags'])
key_frames_inds = np.where(key_frame_flags)[0].tolist()
ref_frames_inds = np.where(~key_frame_flags)[0].tolist()
track_data_sample.set_metainfo(
dict(key_frames_inds=key_frames_inds))
track_data_sample.set_metainfo(
dict(ref_frames_inds=ref_frames_inds))
packed_results['data_samples'] = track_data_sample
return packed_results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'meta_keys={self.meta_keys}, '
repr_str += f'default_meta_keys={self.default_meta_keys})'
return repr_str
@TRANSFORMS.register_module()
class PackSAMInputs(PackDetInputs):
mapping_table = {
'gt_bboxes': 'bboxes',
'gt_bboxes_labels': 'labels',
'gt_masks': 'masks',
'gt_point_coords': 'point_coords',
}
def transform(self, results: dict) -> dict:
if 'feat' in results:
gt_feats = results['feat']
results = super().transform(results)
results['data_samples'].gt_feats = gt_feats
return results
else:
return super().transform(results)
@TRANSFORMS.register_module()
class GeneratePoint(BaseTransform):
def __init__(self, num_proposals=60, num_mask_tokens=4):
self.num_proposals = num_proposals
self.num_mask_tokens = num_mask_tokens
def transform(self, results):
data_samples = results['data_samples']
gt_instances = data_samples.gt_instances
ori_num_instances = len(gt_instances)
ori_indices = torch.randperm(ori_num_instances)
if ori_num_instances < self.num_proposals:
repeat_cnt = (self.num_proposals // ori_num_instances) + 1
ori_indices = ori_indices.repeat(repeat_cnt)
indices = ori_indices[:self.num_proposals]
masks = gt_instances.masks.to_tensor(torch.bool, 'cpu')
gt_collected = []
for instance_idx in indices:
mask = masks[instance_idx]
candidate_indices = mask.nonzero()
assert len(candidate_indices) > 0
selected_index = random.randint(0, len(candidate_indices) - 1)
selected_point = candidate_indices[selected_index].flip(0)
selected_instances_idx = []
for instance_to_match_idx in range(len(gt_instances)):
mask_to_match = masks[instance_to_match_idx]
if mask_to_match[tuple(selected_point.flip(0))]:
selected_instances_idx.append(instance_to_match_idx)
assert len(selected_instances_idx) > 0
if len(selected_instances_idx) > self.num_mask_tokens:
random.shuffle(selected_instances_idx)
selected_instances_idx = selected_instances_idx[:self.num_mask_tokens]
selected_point = torch.cat([selected_point - 3, selected_point + 3], 0)
gt_collected.append({
'point_coords': selected_point,
'instances': selected_instances_idx,
})
data_samples.gt_instances_collected = InstanceData(
point_coords=torch.stack([itm['point_coords'] for itm in gt_collected]),
sub_instances=[itm['instances'] for itm in gt_collected],
idx=indices
)
return results
|