LTT commited on
Commit
155ad21
·
verified ·
1 Parent(s): dfc2f3d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -3
app.py CHANGED
@@ -73,7 +73,9 @@ import torch.nn.functional as F
73
  from PIL import Image
74
  from torchvision import transforms
75
  from torchvision.transforms import v2
76
- from diffusers import HeunDiscreteScheduler
 
 
77
  from diffusers import FluxPipeline
78
  from pytorch_lightning import seed_everything
79
  import os
@@ -95,10 +97,14 @@ isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(d
95
 
96
  # model initialization and loading
97
  # flux
98
- flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(device=device_0, dtype=torch.bfloat16)
 
 
 
99
  flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model")
100
  flux_pipe.load_lora_weights(flux_lora_ckpt_path)
101
  flux_pipe.to(device=device_0, dtype=torch.bfloat16)
 
102
 
103
 
104
  # lrm
@@ -210,7 +216,8 @@ def generate_multi_view_images(prompt, seed):
210
  width=resolution * 4,
211
  height=resolution * 2,
212
  output_type='np',
213
- generator=generator
 
214
  ).images
215
  return images
216
 
 
73
  from PIL import Image
74
  from torchvision import transforms
75
  from torchvision.transforms import v2
76
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
77
+ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
78
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
79
  from diffusers import FluxPipeline
80
  from pytorch_lightning import seed_everything
81
  import os
 
97
 
98
  # model initialization and loading
99
  # flux
100
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device_0)
101
+ good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=access_token).to(device_0)
102
+ # flux_pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=access_token).to(device=device_0, dtype=torch.bfloat16)
103
+ flux_pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, vae=taef1).to(device)
104
  flux_lora_ckpt_path = hf_hub_download(repo_id="LTT/xxx-ckpt", filename="rgb_normal_large.safetensors", repo_type="model")
105
  flux_pipe.load_lora_weights(flux_lora_ckpt_path)
106
  flux_pipe.to(device=device_0, dtype=torch.bfloat16)
107
+ flux_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(flux_pipe)
108
 
109
 
110
  # lrm
 
216
  width=resolution * 4,
217
  height=resolution * 2,
218
  output_type='np',
219
+ generator=generator,
220
+ good_vae=good_vae,
221
  ).images
222
  return images
223