|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
ControlNetModel, |
|
DDIMScheduler, |
|
StableDiffusionControlNetInpaintPipeline, |
|
StableDiffusionControlNetPAGInpaintPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..pipeline_params import ( |
|
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionControlNetPAGInpaintPipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionControlNetPAGInpaintPipeline |
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS |
|
image_params = frozenset({"control_image"}) |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
def get_dummy_components(self): |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=9, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
torch.manual_seed(0) |
|
controlnet = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
cross_attention_dim=32, |
|
conditioning_embedding_out_channels=(16, 32), |
|
) |
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
control_image = randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
) |
|
init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
init_image = init_image.cpu().permute(0, 2, 3, 1)[0] |
|
|
|
image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64)) |
|
mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64)) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"pag_scale": 3.0, |
|
"output_type": "np", |
|
"image": image, |
|
"mask_image": mask_image, |
|
"control_image": control_image, |
|
} |
|
|
|
return inputs |
|
|
|
def test_pag_disable_enable(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
|
|
pipe_sd = StableDiffusionControlNetInpaintPipeline(**components) |
|
pipe_sd = pipe_sd.to(device) |
|
pipe_sd.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
del inputs["pag_scale"] |
|
assert ( |
|
"pag_scale" not in inspect.signature(pipe_sd.__call__).parameters |
|
), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__calss__.__name__}." |
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["pag_scale"] = 0.0 |
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] |
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 |
|
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 |
|
|
|
def test_pag_cfg(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = pipe_pag(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == ( |
|
1, |
|
64, |
|
64, |
|
3, |
|
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" |
|
expected_slice = np.array( |
|
[0.7488756, 0.61194265, 0.53382546, 0.5993959, 0.6193306, 0.56880975, 0.41277143, 0.5050145, 0.49376273] |
|
) |
|
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}" |
|
|
|
def test_pag_uncond(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) |
|
pipe_pag = pipe_pag.to(device) |
|
pipe_pag.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["guidance_scale"] = 0.0 |
|
image = pipe_pag(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == ( |
|
1, |
|
64, |
|
64, |
|
3, |
|
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" |
|
expected_slice = np.array( |
|
[0.7410303, 0.5989337, 0.530866, 0.60571927, 0.6162597, 0.5719856, 0.4187478, 0.5101238, 0.4978468] |
|
) |
|
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max() |
|
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}" |
|
|