|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers import ConsistencyDecoderVAE, StableDiffusionPipeline |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
load_image, |
|
slow, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..test_modeling_common import ModelTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase): |
|
model_class = ConsistencyDecoderVAE |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
forward_requires_fresh_args = True |
|
|
|
def get_consistency_vae_config(self, block_out_channels=None, norm_num_groups=None): |
|
block_out_channels = block_out_channels or [2, 4] |
|
norm_num_groups = norm_num_groups or 2 |
|
return { |
|
"encoder_block_out_channels": block_out_channels, |
|
"encoder_in_channels": 3, |
|
"encoder_out_channels": 4, |
|
"encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), |
|
"decoder_add_attention": False, |
|
"decoder_block_out_channels": block_out_channels, |
|
"decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels), |
|
"decoder_downsample_padding": 1, |
|
"decoder_in_channels": 7, |
|
"decoder_layers_per_block": 1, |
|
"decoder_norm_eps": 1e-05, |
|
"decoder_norm_num_groups": norm_num_groups, |
|
"encoder_norm_num_groups": norm_num_groups, |
|
"decoder_num_train_timesteps": 1024, |
|
"decoder_out_channels": 6, |
|
"decoder_resnet_time_scale_shift": "scale_shift", |
|
"decoder_time_embedding_type": "learned", |
|
"decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels), |
|
"scaling_factor": 1, |
|
"latent_channels": 4, |
|
} |
|
|
|
def inputs_dict(self, seed=None): |
|
if seed is None: |
|
generator = torch.Generator("cpu").manual_seed(0) |
|
else: |
|
generator = torch.Generator("cpu").manual_seed(seed) |
|
image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device)) |
|
|
|
return {"sample": image, "generator": generator} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def init_dict(self): |
|
return self.get_consistency_vae_config() |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
return self.init_dict, self.inputs_dict() |
|
|
|
def test_enable_disable_tiling(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
inputs_dict.update({"return_dict": False}) |
|
_ = inputs_dict.pop("generator") |
|
|
|
torch.manual_seed(0) |
|
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
torch.manual_seed(0) |
|
model.enable_tiling() |
|
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertLess( |
|
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), |
|
0.5, |
|
"VAE tiling should not affect the inference results", |
|
) |
|
|
|
torch.manual_seed(0) |
|
model.disable_tiling() |
|
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertEqual( |
|
output_without_tiling.detach().cpu().numpy().all(), |
|
output_without_tiling_2.detach().cpu().numpy().all(), |
|
"Without tiling outputs should match with the outputs when tiling is manually disabled.", |
|
) |
|
|
|
def test_enable_disable_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
inputs_dict.update({"return_dict": False}) |
|
_ = inputs_dict.pop("generator") |
|
|
|
torch.manual_seed(0) |
|
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
torch.manual_seed(0) |
|
model.enable_slicing() |
|
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertLess( |
|
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), |
|
0.5, |
|
"VAE slicing should not affect the inference results", |
|
) |
|
|
|
torch.manual_seed(0) |
|
model.disable_slicing() |
|
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertEqual( |
|
output_without_slicing.detach().cpu().numpy().all(), |
|
output_without_slicing_2.detach().cpu().numpy().all(), |
|
"Without slicing outputs should match with the outputs when slicing is manually disabled.", |
|
) |
|
|
|
|
|
@slow |
|
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@torch.no_grad() |
|
def test_encode_decode(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") |
|
vae.to(torch_device) |
|
|
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
).resize((256, 256)) |
|
image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :].to( |
|
torch_device |
|
) |
|
|
|
latent = vae.encode(image).latent_dist.mean |
|
|
|
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample |
|
|
|
actual_output = sample[0, :2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024]) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_sd(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None |
|
) |
|
pipe.to(torch_device) |
|
|
|
out = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
actual_output = out[:2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759]) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_encode_decode_f16(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained( |
|
"openai/consistency-decoder", torch_dtype=torch.float16 |
|
) |
|
vae.to(torch_device) |
|
|
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/img2img/sketch-mountains-input.jpg" |
|
).resize((256, 256)) |
|
image = ( |
|
torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :] |
|
.half() |
|
.to(torch_device) |
|
) |
|
|
|
latent = vae.encode(image).latent_dist.mean |
|
|
|
sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample |
|
|
|
actual_output = sample[0, :2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor( |
|
[-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471], |
|
dtype=torch.float16, |
|
) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_sd_f16(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained( |
|
"openai/consistency-decoder", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", |
|
torch_dtype=torch.float16, |
|
vae=vae, |
|
safety_checker=None, |
|
) |
|
pipe.to(torch_device) |
|
|
|
out = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
actual_output = out[:2, :2, :2].flatten().cpu() |
|
expected_output = torch.tensor( |
|
[0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035], |
|
dtype=torch.float16, |
|
) |
|
|
|
assert torch_all_close(actual_output, expected_output, atol=5e-3) |
|
|
|
def test_vae_tiling(self): |
|
vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) |
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
out_1 = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
|
|
pipe.enable_vae_tiling() |
|
out_2 = pipe( |
|
"horse", |
|
num_inference_steps=2, |
|
output_type="pt", |
|
generator=torch.Generator("cpu").manual_seed(0), |
|
).images[0] |
|
|
|
assert torch_all_close(out_1, out_2, atol=5e-3) |
|
|
|
|
|
shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] |
|
with torch.no_grad(): |
|
for shape in shapes: |
|
image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype) |
|
pipe.vae.decode(image) |
|
|